** WARNING ** WARNING ** WARNING ** This document is intended for informational purposes only.

Users are cautioned that California Department of Transportation (Department) does not assume any liability or responsibility based on these electronic files or for any defective or incomplete copying, exerpting, scanning, faxing or downloading of the contract documents. As always, for the official paper versions of the bidders packages and non-bidder packages, including addenda write to the California Department of Transportation, Plans and Bid Documents, Room 0200, P.O. Box 942874, Sacramento, CA 94272-0001, telephone (916) 654-4490 or fax (916) 654-7028. Office hours are 7:30 a.m. to 4:15 p.m. When ordering bidder or non-bidder packages it is important that you include a telephone number and fax number, P.O. Box and street address so that you can receive addenda.

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

NOTICE TO CONTRACTORS AND SPECIAL PROVISIONS

FOR CONSTRUCTION ON STATE HIGHWAY IN

IN PLUMAS COUNTY NEAR QUINCY FROM 0.3 KM EAST OF MASSACK SAFETY ROADSIDE REST AREA TO 0.1 KM EAST OF SQUIRREL CREEK ROAD

	DISTRICT 02, ROUTE 70
For Use in Connection w	ith Standard Specifications Dated JULY 1999, Standard Plans Dated JULY 1999, and Labor Surcharge and Equipment Rental Rates.

CONTRACT NO. 02-0C0504 02-Plu-70-80.5/83.1

Bids Open: November 2, 2004 Dated: October 12, 2004

TABLE OF CONTENTS

NOTICE TO CONTRACTORS	1
COPY OF ENGINEER'S ESTIMATE	3
SPECIAL PROVISIONS	
SECTION 1. SPECIFICATIONS AND PLANS	
AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS	4
SECTION 2. PROPOSAL REQUIREMENTS AND CONDITIONS	57
2-1.01 GENERAL	57
2-1.02 DISABLED VETERAN BUSINESS ENTERPRISE (DVBE)	57
2-1.03 DVBE GOAL FOR THIS PROJECT	
2-1.04 SUBMISSION OF DVBE INFORMATION	58
2-1.05 SMALL BUSINESS PREFERENCE.	59
2-1.06 CALIFORNIA COMPANY PREFERENCE	60
SECTION 3. AWARD AND EXECUTION OF CONTRACT	
SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION AND LIQUIDATED DAMAGES	61
SECTION 5. GENERAL	
SECTION 5-1. MISCELLANEOUS	
5-1.01 PLANS AND WORKING DRAWINGS	
5-1.011 EXAMINATION OF PLANS, SPECIFICATIONS, CONTRACT, AND SITE OF WORK	
5-1.012 DIFFERING SITE CONDITIONS	
5-1.013 LINES AND GRADES	
5-1.015 LABORATORY	
5-1.017 CONTRACT BONDS	
5-1.019 COST REDUCTION INCENTIVE	
5-1.02 LABOR NONDISCRIMINATION	
5-1.022 PAYMENT OF WITHHELD FUNDS.	63
5-1.03 INTEREST ON PAYMENTS	
5-1.04 PUBLIC SAFETY	
5-1.05 TESTING	
5-1.06 REMOVAL OF ASBESTOS AND HAZARDOUS SUBSTANCES	
5-1.07 YEAR 2000 COMPLIANCE	
5-1.08 SUBCONTRACTOR AND DVBE RECORDS	
5-1.086 PERFORMANCE OF DVBE SUBCONTRACTORS AND SUPPLIERS	
5-1.09 SUBCONTRACTING.	
5-1.10 PROMPT PROGRESS PAYMENT TO SUBCONTRACTORS	
5-1.103 RECORDS	
5-1.11 AREAS FOR CONTRACTOR'S USE	66
5-1.12 PAYMENTS	
5-1.13 MATERIAL WITH NATURALLY OCCURRING ASBESTOS	
AIR QUALITY MONITORING	
DISPOSAL	
PAYMENT	
SECTION 6. (BLANK)	
SECTION 7. (BLANK)	
SECTION 8. MATERIALS	
SECTION 8-1. MISCELLANEOUS	
8-1.01 SUBSTITUTION OF NON-METRIC MATERIALS AND PRODUCTS	
8-1.02 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS	
8-1.03 STATE-FURNISHED MATERIALS	
SECTION 8-2. CONCRETE	
8-2.01 PORTLAND CEMENT CONCRETE	
SECTION 8-3. WELDING	
8-3.01 WELDING	
GENERAL	
WELDING QUALITY CONTROL	

WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES	
PAYMENT	87
SECTION 9. DESCRIPTION OF BRIDGE WORK	
SPRING GARDEN OVERHEAD	
SECTION 10. CONSTRUCTION DETAILS	
SECTION 10-1. GENERAL	
10-1.01 ORDER OF WORK	
10-1.02 WATER POLLUTION CONTROL	
RETENTION OF FUNDSWATER POLLUTION CONTROL PROGRAM PREPARATION, APPROVAL AND AMEND	89
COST BREAK-DOWN	
WPCP IMPLEMENTATION	
REPORTING REQUIREMENTS	
PAYMENT	
10-1.03 NATURALLY-OCCURRING ASBESTOS SOILS PLAN AND MONITORING	
GENERAL	
SUBMITTALS	
TRAINING	
EQUIPMENT AND MEDICAL SURVEILLANCE	
PERMITS AND RECEIPTS	
PAYMENT	
10-1.04 OBSTRUCTIONS	
10-1.05 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES	
10-1.06 CONSTRUCTION AREA SIGNS	
10-1.07 MAINTAINING TRAFFIC	97
10-1.08 CLOSURE REQUIREMENTS AND CONDITIONS	
CLOSURE SCHEDULE	
CONTINGENCY PLAN	
LATE REOPENING OF CLOSURES	
COMPENSATION	
10-1.09 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE	
10-1.10 PORTABLE CHANGEABLE MESSAGE SIGN	
10-1.11 TEMPORARY CRASH CUSHION MODULE	
10-1.12 AGGREGATE BASE	
10-1.13 ASPHALT CONCRETE	
10-1.14 PILING	
GENERAL	
CAST-IN-DRILLED-HOLE CONCRETE PILES	
MATERIALSROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE	
INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER	
THE JOB SITE	
WELDING.	
MEASUREMENT AND PAYMENT	
10-1.16 SIGN STRUCTURES	
10-1.17 MISCELLANEOUS CONCRETE CONSTRUCTION	
10-1.18 CHAIN LINK FENCE	
10-1.19 MARKERS	
10-1.20 METAL BEAM GUARD RAILING	
TERMINAL SYSTEM (TYPE SRT)	
SECTION 10-2. (BLANK)	
SECTION 10-3. SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS	119
10-3.01 DESCRIPTION	
10-3.02 COST BREAK-DOWN	
10-3.03 FOUNDATIONS	
10-3.04 STANDARDS, STEEL PEDESTALS AND POSTS	120
10-3 05 CONDUIT	120

10-3.06 HIGH DENSITY POLYETHYLENE (HDPE) CONDUIT	
GENERAL	
MATERIAL	
CONDUIT	
JOINING OF CONDUIT	
INSTALLATION	
CERTIFICATES OF COMPLIANCE, MATERIALS RECEIVING INSPECTION AND MANUF	
DATA	
10-3.07 PULL BOXES	
10-3.08 CONDUCTORS AND WIRING	
TELEPHONE CABLE	123
10-3.09 BONDING AND GROUNDING	
10-3.10 SERVICE	124
10-3.11 STATE-FURNISHED CONTROLLER ASSEMBLIES	
10-3.12 TRANSFORMERS	
GENERAL	
OPERATION	
MOUNTING/CONFIGURATION	
BATTERY	
MAINTENANCE, DISPLAYS, CONTROLS AND DIAGNOSTICS	
QUALITY ASSURANCE	
DESIGN QUALIFICATION TESTING	
PRODUCTION QUALITY CONTROL TESTING	
WARRANTY	
PAYMENT	
10-3.14 FIBER OPTIC	
CONDUIT	
INNERDUCT	
CONDUIT AND INNERDUCT SEALING PLUGS	
DEFINITIONS	128
FIBER OPTIC OUTSIDE PLANT CABLE	
LABELING	
CABLE INSTALLATION	
SPLICING	
PASSIVE CABLE ASSEMBLIES AND COMPONENTS	
FIBER OPTIC CABLE TERMINATIONS	
ACTIVE ASSEMBLIES AND COMPONENTS	
FIBER OPTIC TESTING.	
PAYMENT	137
10-3.15 ROADWAY WEATHER INFORMATION SYSTEM	
DESCRIPTION	
REMOTE PROCESSING UNIT	
COMMUNICATIONS	
PAVEMENT SENSORS	
PRECIPITATION SENSORRELATIVE HUMIDITY SENSOR AND AIR TEMPERATURE SENSOR	
WIND SPEED AND DIRECTION SENSOR	
QUALITY ASSURANCE	
INSTRUMENT TOWER ASSEMBLIES	142
PAYMENT TOWER ASSEMBLIES	
ROADWAY WEATHER INFORMATION SYSTEM EQUIPMENT QUOTED PRICING	
10-3.16 TESTING	
10-3.17 RELIEF FROM MAINTENANCETRAINING	
10-3.18 MODEL 510 CHANGEABLE MESSAGE SIGN SYSTEM	
10-3.19 PAYMENT	
CTION 11. (BLANK)	
CTION 12. (BLANK)	
CTION 13 RAII ROAD RELATIONS AND INSURANCE REQUIREMENTS	

13-1.01	GENERAL	144
13-1.02	RAILROAD REQUIREMENTS	144
13-1.03	PROTECTION OF RAILROAD FACILITIES	146
13-1.04	WORK BY RAILROAD	146
13-1.05	DELAYS DUE TO WORK BY RAILROAD	147
13-1.06	LEGAL RELATIONS	147
13-2 RAI	LROAD PROTECTIVE INSURANCE	147

STANDARD PLANS LIST

The Standard Plan sheets applicable to this contract include, but are not limited to those indicated below. The Revised Standard Plans (RSP) and New Standard Plans (NSP) which apply to this contract are included as individual sheets of the project plans.

A10A	Abbreviations
A10B	Symbols
A73A	Object Markers
A77A	Metal Beam Guard Railing – Typical Wood Post With Wood Block
A77B	Metal Beam Guard Railing - Standard Hardware
A77C	Metal Beam Guard Railing – Wood Post and Wood Block Details
A77D	Metal Beam Guard Railing – Typical Layouts
A77E	Metal Beam Guard Railing – Typical Layouts
A77F	Metal Beam Guard Railing – Typical Embankment Widening for End Treatments
A77FA	Metal Beam Guard Railing – Typical Line Post Installation
RSP	Metal Beam Guard Railing – End Treatment, Terminal Anchor Assembly (Type SFT)
A77G	
A77H	Metal Beam Guard Railing - Anchor Cable and Anchor Plate Details
RSP	Metal Beam Guard Railing and Single Faced Barrier Railing Terminal System - End
A77L	Treatments
A85	Chain Link Fence
A86	Barbed Wire and Wire Mesh Fences
RSP T2	Temporary Crash Cushion, Sand Filled (Shoulder Installations)
T13	Traffic Control System for Lane Closure On Two Lane Conventional Highways
ES-1A	Signal, Lighting and Electrical Systems - Symbols and Abbreviations
ES-1B	Signal, Lighting and Electrical Systems - Symbols and Abbreviations
ES-2A	Signal, Lighting and Electrical Systems - Service Equipment
ES-2C	Signal, Lighting and Electrical Systems - Service Equipment Notes, Type III Series
ES-2D	Signal, Lighting and Electrical Systems - Service Equipment and Typical Wiring Diagram
	Type III-A Series
ES-3C	Signal, Lighting and Electrical Systems - Controller Cabinet Details
ES-3D	Signal, Lighting and Electrical Systems - Telephone Demarcation Cabinet Details, Type A
ES-8	Signal, Lighting and Electrical Systems - Pull Box Details
ES-9A	Signal, Lighting and Electrical Systems - Electrical Details, Structure Installations
ES-9B	Signal, Lighting and Electrical Systems - Electrical Details, Structure Installations
ES-13A	Signal, Lighting and Electrical Systems - Splicing Details

State Project with DVBE Goals (10-09--03)

DEPA	ARTMENT OF TRANSPORTATION
	NOTICE TO CONTRACTORS
	CONTRACT NO. 02-0C0504

02-Plu-70-80.5/83.1

Sealed proposals for the work shown on the plans entitled:

STATE OF CALIFORNIA; DEPARTMENT OF TRANSPORTATION; PROJECT PLANS FOR CONSTRUCTION ON STATE HIGHWAY IN IN PLUMAS COUNTY NEAR QUINCY FROM 0.3 KM EAST OF MASSACK SAFETY ROADSIDE REST AREA TO 0.1 KM EAST OF SQUIRREL CREEK ROAD

will be received at the Department of Transportation, 1120 N Street, Room 0200, MS #26, Sacramento, CA 95814, until 2 o'clock p.m. on November 2, 2004, at which time they will be publicly opened and read in Room 0100 at the same address. Proposal forms for this work are included in a separate book entitled:

STATE OF CALIFORNIA; DEPARTMENT OF TRANSPORTATION; PROPOSAL AND CONTRACT FOR CONSTRUCTION ON STATE HIGHWAY IN IN PLUMAS COUNTY NEAR QUINCY FROM 0.3 KM EAST OF MASSACK SAFETY ROADSIDE REST AREA TO 0.1 KM EAST OF SQUIRREL CREEK ROAD

General work description: Icy Pavement Warning System.

This project has a goal of 3.0 percent disabled veteran business enterprise (DVBE) participation.

No prebid meeting is scheduled for this project.

Bids are required for the entire work described herein.

At the time this contract is awarded, the Contractor shall possess either a Class A license or one of the following Class C licenses: C-10.

The Contractor must also be properly licensed at the time the bid is submitted, except that on a joint venture bid a joint venture license may be obtained by a combination of licenses after bid opening but before award in conformance with Business and Professions Code, Section 7029.1.

This contract is subject to state contract nondiscrimination and compliance requirements pursuant to Government Code, Section 12990.

Preference will be granted to bidders properly certified as a "Small Business" as determined by the Department of General Services, Office of Small Business and Disabled Veteran Business Enterprise Certification (OSDC), at the time of bid opening in conformance with the provisions in Section 2-1.05, "Small Business Preference," of the special provisions, and Section 1896 et seq, Title 2, California Code of Regulations. A form for requesting a "Small Business" preference is included with the bid documents. Applications for status as a "Small Business" must be submitted to the Department of General Services, Office of Small Business and Disabled Veteran Business Enterprise Certification, 707 Third Street, West Sacramento, CA 95605, Telephone Nos. (800) 559-5529 or (916) 375-4940.

A reciprocal preference will be granted to "California company" bidders in conformance with Section 6107 of the Public Contract Code. (See Sections 2 and 3 of the special provisions.) A form for indicating whether bidders are or are not a "California company" is included in the bid documents and is to be filled in and signed by all bidders.

The District in which the work for this project is located has been incorporated into the Department's Northern Region. References in the Instruction to Bidders or the General Conditions or in the special provisions to the district shall be deemed to mean the Northern Region. The office of the District Director for the Northern Region is located at Marysville.

Inquiries or questions based on alleged patent ambiguity of the plans, specifications or estimate must be communicated as a bidder inquiry prior to bid opening. Any such inquiries or questions, submitted after bid opening, will not be treated as a bid protest.

The Department will consider bidder inquiries only when made in writing and shall be submitted to CALTRANS North Region Construction Office by either E-mail or Fax:

E-mail: inquiry_nr_bid@dot.ca.gov FAX Number: (530) 822-4324

Responses to the bidder will be posted on the Internet at:

www.dot.ca.gov/dist3/departments/construction/bidders/find_res.htm

Project plans, special provisions, and proposal forms for bidding this project can only be obtained at the Department of Transportation, Plans and Bid Documents, Room 0200, MS #26, Transportation Building, 1120 N Street, Sacramento, California 95814, FAX No. (916) 654-7028, Telephone No. (916) 654-4490. Use FAX orders to expedite orders for project plans, special provisions and proposal forms. FAX orders must include credit card charge number, card expiration date and authorizing signature. Project plans, special provisions, and proposal forms may be seen at the above Department of Transportation office and at the offices of the District Directors of Transportation at Irvine, Oakland, and the district in which the work is situated. Standard Specifications and Standard Plans are available through the State of California, Department of Transportation, Publications Unit, 1900 Royal Oaks Drive, Sacramento, CA 95815, Telephone No. (916) 445-3520.

Cross sections for this project are not available.

The successful bidder shall furnish a payment bond and a performance bond.

Pursuant to Section 1773 of the Labor Code, the general prevailing wage rates in the county, or counties, in which the work is to be done have been determined by the Director of the California Department of Industrial Relations. These wages are set forth in the General Prevailing Wage Rates for this project, available at the Labor Compliance Office at the offices of the District Director of Transportation for the district in which the work is situated, and available from the California Department of Industrial Relations' Internet Web Site at: http://www.dir.ca.gov. Future effective general prevailing wage rates which have been predetermined and are on file with the Department of Industrial Relations are referenced but not printed in the general prevailing wage rates.

DEPARTMENT OF TRANSPORTATION

Deputy Director Transportation Engineering

Dated October 12, 2004

JKB

COPY OF ENGINEER'S ESTIMATE

(NOT TO BE USED FOR BIDDING PURPOSES)

02-0C0504

Item No.	Item Code	Item Description	Unit of Measure	Estimated Quantity
1	074017	PREPARE WATER POLLUTION CONTROL PROGRAM	LS	LUMP SUM
2	074020	WATER POLLUTION CONTROL	LS	LUMP SUM
3 (S)	120090	CONSTRUCTION AREA SIGNS	LS	LUMP SUM
4 (S)	120100	TRAFFIC CONTROL SYSTEM	LS	LUMP SUM
5 (S)	128650	PORTABLE CHANGEABLE MESSAGE SIGN	LS	LUMP SUM
6	260201	CLASS 2 AGGREGATE BASE	M3	20
7	390155	ASPHALT CONCRETE (TYPE A)	TONN	29
8	394002	PLACE ASPHALT CONCRETE (MISCELLANEOUS AREA)	M2	230
9 (F)	560218	FURNISH SIGN STRUCTURE (TRUSS)	KG	11 074
10 (S-F)	560219	INSTALL SIGN STRUCTURE (TRUSS)	KG	11 074
11 (S)	561012	1220 MM CAST-IN-DRILLED-HOLE CONCRETE PILE (SIGN FOUNDATION)	M	15
12	731502	MINOR CONCRETE (MISCELLANEOUS CONSTRUCTION)	M3	5
13 (S)	800391	CHAIN LINK FENCE (TYPE CL-1.8)	M	2
14	820140	OBJECT MARKER (TYPE PB)	EA	80
15	820151	OBJECT MARKER (TYPE L-1)	EA	2
16 (S)	832001	METAL BEAM GUARD RAILING	M	25
17 (S)	839565	TERMINAL SYSTEM (TYPE SRT)	EA	2
18 (S)	839568	TERMINAL ANCHOR ASSEMBLY (TYPE SFT)	EA	2
19	033661	TRAFFIC OPERATION SYSTEM	LS	LUMP SUM

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISIONS

Annexed to Contract No. 02-0C0504

SECTION 1. SPECIFICATIONS AND PLANS

The work embraced herein shall conform to the provisions in the Standard Specifications dated July 1999, and the Standard Plans dated July 1999, of the Department of Transportation insofar as the same may apply, and these special provisions.

In case of conflict between the Standard Specifications and these special provisions, the special provisions shall take precedence over and shall be used in lieu of the conflicting portions.

AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS

UPDATED March 25, 2004

Amendments to the Standard Specifications set forth in these special provisions shall be considered as part of the Standard Specifications for the purposes set forth in Section 5-1.04, "Coordination and Interpretation of Plans, Standard Specifications and Special Provisions," of the Standard Specifications. Whenever either the term "Standard Specifications is amended" or the term "Standard Specifications are amended" is used in the special provisions, the text or table following the term shall be considered an amendment to the Standard Specifications. In case of conflict between such amendments and the Standard Specifications, the amendments shall take precedence over and be used in lieu of the conflicting portions.

SECTION 2: PROPOSAL REQUIREMENTS AND CONDITIONS

Issue Date: June 19, 2003

Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications is amended to read:

2-1.03 Examination of Plans, Specifications, Contract, and Site of Work

- The bidder shall examine carefully the site of the work contemplated, the plans and specifications, and the proposal and contract forms therefor. The submission of a bid shall be conclusive evidence that the bidder has investigated and is satisfied as to the general and local conditions to be encountered, as to the character, quality and scope of work to be performed, the quantities of materials to be furnished and as to the requirements of the proposal, plans, specifications and the contract.
- The submission of a bid shall also be conclusive evidence that the bidder is satisfied as to the character, quality and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information was reasonably ascertainable from an inspection of the site and the records of exploratory work done by the Department as shown in the bid documents, as well as from the plans and specifications made a part of the contract.
- Where the Department has made investigations of site conditions including subsurface conditions in areas where work is to be performed under the contract, or in other areas, some of which may constitute possible local material sources, bidders or contractors may, upon written request, inspect the records of the Department as to those investigations subject to and upon the conditions hereinafter set forth.
- Where there has been prior construction by the Department or other public agencies within the project limits, records of the prior construction that are currently in the possession of the Department and which have been used by, or are known to, the designers and administrators of the project will be made available for inspection by bidders or contractors,

upon written request, subject to the conditions hereinafter set forth. The records may include, but are not limited to, as-built drawings, design calculations, foundation and site studies, project reports and other data assembled in connection with the investigation, design, construction and maintenance of the prior projects.

- Inspection of the records of investigations and project records may be made at the office of the district in which the work is situated, or in the case of records of investigations related to structure work, at the Transportation Laboratory in Sacramento, California.
- When a log of test borings or other record of geotechnical data obtained by the Department's investigation of surface and subsurface conditions is included with the contract plans, it is furnished for the bidders' or Contractor's information and its use shall be subject to the conditions and limitations set forth in this Section 2-1.03.
- In some instances, information considered by the Department to be of possible interest to bidders or contractors has been compiled as "Materials Information." The use of the "Materials Information" shall be subject to the conditions and limitations set forth in this Section 2-1.03 and Section 6-2, "Local Materials."
- When cross sections are not included with the plans, but are available, bidders or contractors may inspect the cross sections and obtain copies for their use, at their expense.
- When cross sections are included with the contract plans, it is expressly understood and agreed that the cross sections do not constitute part of the contract, do not necessarily represent actual site conditions or show location, character, dimensions and details of work to be performed, and are included in the plans only for the convenience of bidders and their use is subject to the conditions and limitations set forth in this Section 2-1.03.
- When contour maps were used in the design of the project, the bidders may inspect those maps, and if available, they may obtain copies for their use.
- The availability or use of information described in this Section 2-1.03 is not to be construed in any way as a waiver of the provisions of the first paragraph in this Section 2-1.03 and bidders and contractors are cautioned to make independent investigations and examinations as they deem necessary to be satisfied as to conditions to be encountered in the performance of the work and, with respect to possible local material sources, the quality and quantity of material available from the property and the type and extent of processing that may be required in order to produce material conforming to the requirements of the specifications.
- The Department assumes no responsibility for conclusions or interpretations made by a bidder or contractor based on the information or data made available by the Department. The Department does not assume responsibility for representation made by its officers or agents before the execution of the contract concerning surface or subsurface conditions, unless that representation is expressly stated in the contract.
- No conclusions or interpretations made by a bidder or contractor from the information and data made available by the Department will relieve a bidder or contractor from properly fulfilling the terms of the contract.

SECTION 5: CONTROL OF WORK

Issue Date: December 31, 2001

Section 5-1.02A, "Trench Excavation Safety Plans," of the Standard Specifications is amended to read:

5-1.02A Excavation Safety Plans

- The Construction Safety Orders of the Division of Occupational Safety and Health shall apply to all excavations. For all excavations 1.5 m or more in depth, the Contractor shall submit to the Engineer a detailed plan showing the design and details of the protective systems to be provided for worker protection from the hazard of caving ground during excavation. The detailed plan shall include any tabulated data and any design calculations used in the preparation of the plan. Excavation shall not begin until the detailed plan has been reviewed and approved by the Engineer.
- Detailed plans of protective systems for which the Construction Safety Orders require design by a registered professional engineer shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California, and shall include the soil classification, soil properties, soil design calculations that demonstrate adequate stability of the protective system, and any other design calculations used in the preparation of the plan.
- No plan shall allow the use of a protective system less effective than that required by the Construction Safety Orders.
- If the detailed plan includes designs of protective systems developed only from the allowable configurations and slopes, or Appendices, contained in the Construction Safety Orders, the plan shall be submitted at least 5 days before the Contractor intends to begin excavation. If the detailed plan includes designs of protective systems developed from tabulated data, or designs for which design by a registered professional engineer is required, the plan shall be submitted at least 3 weeks before the Contractor intends to begin excavation.
 - Attention is directed to Section 7-1.01E, "Trench Safety."

SECTION 9: MEASUREMENT AND PAYMENT

Issue Date: February 10, 2004

Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications is amended to read:

9-1.04 NOTICE OF POTENTIAL CLAIM

- It is the intention of this section that disputes between the parties arising under and by virtue of the contract be brought to the attention of the Engineer at the earliest possible time in order that the matters may be resolved, if possible, or other appropriate action promptly taken.
- Disputes will not be considered unless the Contractor has first complied with specified notice or protest requirements, including Section 4-1.03, "Changes," Section 5-1.116, "Differing Site Conditions," Section 8-1.06, "Time of Completion," Section 8-1.07, "Liquidated Damages," and Section 8-1.10, "Utility and Non-Highway Facilities."
- For disputes arising under and by virtue of the contract, including an act or failure to act by the Engineer, the Contractor shall provide a signed written initial notice of potential claim to the Engineer within 5 days from the date the dispute first arose. The initial notice of potential claim shall provide the nature and circumstances involved in the dispute which shall remain consistent through the dispute. The initial notice of potential claim shall be submitted on Form CEM-6201A furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655. The Contractor shall assign an exclusive identification number for each dispute, determined by chronological sequencing, based on the date of the dispute.
 - The exclusive identification number for each dispute shall be used on the following corresponding documents:
 - A. Initial notice of potential claim.
 - B. Supplemental notice of potential claim.
 - C. Full and final documentation of potential claim.
 - D. Corresponding claim included in the Contractor's written statement of claims.
- The Contractor shall provide the Engineer the opportunity to examine the site of work within 5 days from the date of the initial notice of potential claim. The Contractor shall proceed with the performance of contract work unless otherwise specified or directed by the Engineer.
- Throughout the disputed work, the Contractor shall maintain records that provide a clear distinction between the incurred direct costs of disputed work and that of undisputed work. The Contractor shall allow the Engineer access to the Contractor's project records deemed necessary by the Engineer to evaluate the potential claim within 20 days of the date of the Engineer's written request.
- Within 15 days of submitting the initial notice of potential claim, the Contractor shall provide a signed supplemental notice of potential claim to the Engineer that provides the following information:
 - A. The complete nature and circumstances of the dispute which caused the potential claim.
 - B. The contract provisions that provide the basis of claim.
 - C. The estimated cost of the potential claim, including an itemized breakdown of individual costs and how the estimate was determined.
 - D. A time impact analysis of the project schedule that illustrates the effect on the scheduled completion date due to schedule changes or disruptions where a request for adjustment of contract time is made.
- The information provided in items A and B above shall provide the Contractor's complete reasoning for additional compensation or adjustments.
- The supplemental notice of potential claim shall be submitted on Form CEM-6201B furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655. The Engineer will evaluate the information presented in the supplemental notice of potential claim and provide a written response to the Contractor within 20 days of its receipt. If the estimated cost or effect on the scheduled completion date changes, the Contractor shall update information in items C and D above as soon as the change is recognized and submit this information to the Engineer.
- Within 30 days of the completion of work related to the potential claim, the Contractor shall provide the full and final documentation of potential claim to the Engineer that provides the following information:
 - A. A detailed factual narration of events fully describing the nature and circumstances that caused the dispute, including, but not limited to, necessary dates, locations, and items of work affected by the dispute.

- B. The specific provisions of the contract that support the potential claim and a statement of the reasons these provisions support and provide a basis for entitlement of the potential claim.
- C. When additional monetary compensation is requested, the exact amount requested calculated in conformance with Section 9-1.03, "Force Account Payment," or Section 8-1.09, "Right of Way Delays," including an itemized breakdown of individual costs. These costs shall be segregated into the following cost categories:
 - 1. Labor A listing of individuals, classifications, regular hours and overtime hours worked, dates worked, and other pertinent information related to the requested reimbursement of labor costs.
 - 2. Materials Invoices, purchase orders, location of materials either stored or incorporated into the work, dates materials were transported to the project or incorporated into the work, and other pertinent information related to the requested reimbursement of material costs.
 - 3. Equipment Listing of detailed description (make, model, and serial number), hours of use, dates of use and equipment rates. Equipment rates shall be at the applicable State rental rate as listed in the Department of Transportation publication entitled "Labor Surcharge and Equipment Rental Rates," in effect when the affected work related to the dispute was performed.
 - 4. Other categories as specified by the Contractor or the Engineer.
- D. When an adjustment of contract time is requested the following information shall be provided:
 - 1. The specific dates for which contract time is being requested.
 - 2. The specific reasons for entitlement to a contract time adjustment.
 - 3. The specific provisions of the contract that provide the basis for the requested contract time adjustment.
 - 4. A detailed time impact analysis of the project schedule. The time impact analysis shall show the effect of changes or disruptions on the scheduled completion date to demonstrate entitlement to a contract time adjustment.
- E. The identification and copies of the Contractor's documents and the substance of oral communications that support the potential claim.
- The full and final documentation of the potential claim shall be submitted on Form CEM-6201C furnished by the Department and shall be certified with reference to the California False Claims Act, Government Code Sections 12650-12655.
- Pertinent information, references, arguments, and data to support the potential claim shall be included in the full and final documentation of potential claim. Information submitted subsequent to the full and final documentation submittal will not be considered. Information required in the full and final documentation of potential claim, as listed in items A to E above, that is not applicable to the dispute may be exempted as determined by the Engineer. No full and final documentation of potential claim will be considered that does not have the same nature and circumstances, and basis of claim as those specified on the initial and supplemental notices of potential claim.
- The Engineer will evaluate the information presented in the full and final documentation of potential claim and provide a written response to the Contractor within 30 days of its receipt unless otherwise specified. The Engineer's receipt of the full and final documentation of potential claim shall be evidenced by postal receipt or the Engineer's written receipt if delivered by hand. If the full and final documentation of potential claim is submitted by the Contractor after acceptance of the work by the Director, the Engineer need not provide a written response.
- Provisions in this section shall not apply to those claims for overhead costs and administrative disputes that occur after issuance of the proposed final estimate. Administrative disputes are disputes of administrative deductions or retentions, contract item quantities, contract item adjustments, interest payments, protests of contract change orders as provided in Section 4-1.03A, "Procedure and Protest," and protests of the weekly statement of working days as provided in Section 8-1.06, "Time of Completion." Administrative disputes that occur prior to issuance of the proposed final estimate shall follow applicable requirements of this section. Information listed in the supplemental notice and full and final documentation of potential claim that is not applicable to the administrative dispute may be exempted as determined by the Engineer.
- Unless otherwise specified in the special provisions, the Contractor may pursue the administrative claim process pursuant to Section 9-1.07B, "Final Payment and Claims," for any potential claim found by the Engineer to be without merit.
- Failure of the Contractor to conform to specified dispute procedures shall constitute a failure to pursue diligently and exhaust the administrative procedures in the contract, and is deemed as the Contractor's waiver of the potential claim and a waiver of the right to a corresponding claim for the disputed work in the administrative claim process in conformance with Section 9-1.07B, "Final Payment of Claims," and shall operate as a bar to arbitration pursuant to Section 10240.2 of the California Public Contract Code.

9-1.07B Final Payment and Claims

- After acceptance by the Director, the Engineer will make a proposed final estimate in writing of the total amount payable to the Contractor, including an itemization of the total amount, segregated by contract item quantities, extra work and other bases for payment, and shall also show each deduction made or to be made for prior payments and amounts to be kept or retained under the provisions of the contract. Prior estimates and payments shall be subject to correction in the proposed final estimate. The Contractor shall submit written approval of the proposed final estimate or a written statement of claims arising under or by virtue of the contract so that the Engineer receives the written approval or statement of claims no later than close of business of the thirtieth day after receiving the proposed final estimate. If the thirtieth day falls on a Saturday, Sunday or legal holiday, then receipt of the written approval or statement of claims by the Engineer shall not be later than close of business of the next business day. The Contractor's receipt of the proposed final estimate shall be evidenced by postal receipt. The Engineer's receipt of the Contractor's written approval or statement of claims shall be evidenced by postal receipt or the Engineer's written receipt if delivered by hand.
- On the Contractor's approval, or if the Contractor files no claim within the specified period of 30 days, the Engineer will issue a final estimate in writing in conformance with the proposed final estimate submitted to the Contractor, and within 30 days thereafter the State will pay the entire sum so found to be due. That final estimate and payment thereon shall be conclusive and binding against both parties to the contract on all questions relating to the amount of work done and the compensation payable therefor, except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors."
- If the Contractor within the specified period of 30 days files claims, the Engineer will issue a semifinal estimate in conformance with the proposed final estimate submitted to the Contractor and within 30 days thereafter the State will pay the sum found to be due. The semifinal estimate and corresponding payment shall be conclusive and binding against both parties to the contract on each question relating to the amount of work done and the compensation payable therefor, except insofar as affected by the claims filed within the time and in the manner required hereunder and except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors."
- Except for claims for overhead costs and administrative disputes that occur after issuance of the proposed final estimate, the Contractor shall only provide the following two items of information for each claim:
 - A. The exclusive identification number that corresponds to the supporting full and final documentation of potential claim.
 - B. The final amount of requested additional compensation.
- If the final amount of requested additional compensation is different than the amount of requested compensation included in the full and final documentation of potential claim, the Contractor shall provide in the written statement of claims the reasons for the changed amount, the specific provisions of the contract which support the changed amount, and a statement of the reasons the provisions support and provide a basis for the changed amount. If the Contractor's claim fails to provide an exclusive identification number or if there is a disparity in the provided exclusive identification number, the Engineer will notify the Contractor of the omission or disparity. The Contractor shall have 15 days after receiving notification from the Engineer to correct the omission or disparity. If after the 15 days has elapsed, there is still an omission or disparity of the exclusive identification number assigned to the claim, the Engineer will assign the number. No claim will be considered that has any of the following deficiencies:
 - A. The claim does not have the same nature, circumstances, and basis as the corresponding full and final documentation of potential claim.
 - B. The claim does not have a corresponding full and final documentation of potential claim.
 - C. The claim was not included in the written statement of claims.
 - D. The Contractor did not comply with applicable notice or protest requirements of Sections 4-1.03, "Changes," 5-1.116, "Differing Site Condition," 8-1.06, "Time of Completion," 8-1.07, "Liquidated Damages," 8-1.10, "Utility and Non-Highway Facilities," and 9-1.04, "Notice of Potential Claim."
- Administrative disputes that occur after issuance of the proposed final estimate shall be included in the Contractor's written statement of claims in sufficient detail to enable the Engineer to ascertain the basis and amounts of those claims.
- The Contractor shall keep full and complete records of the costs and additional time incurred for work for which a claim for additional compensation is made. The Engineer or designated claim investigators or auditors shall have access to those records and any other records as may be required by the Engineer to determine the facts or contentions involved in the claims. Failure to permit access to those records shall be sufficient cause for denying the claims.
- The written statement of claims submitted by the Contractor shall be accompanied by a notarized certificate containing the following language:

Under the penalty of law for perjury or falsification and with specific reference to the California False Claims Act, Government Code Section 12650 et. seq., the undersigned,

me)

of

(name)	
	<i>O</i> j
(title)	
	·
(company)	

hereby certifies that the claim for the additional compensation and time, if any, made herein for the work on this contract is a true statement of the actual costs incurred and time sought, and is fully documented and supported under the contract between parties.

Dated	
/s/	
Subscribed and sworn before me this	day
of	
(Notary Public)	
My Commission	
Expires	

- Failure to submit the notarized certificate will be sufficient cause for denying the claim.
- Claims for overhead type expenses or costs, in addition to being certified as stated above, shall be supported and accompanied by an audit report of an independent Certified Public Accountant. Omission of a supporting audit report of an independent Certified Public Accountant shall result in denial of the claim and shall operate as a bar to arbitration, as to the claim, in conformance with the requirements in Section 10240.2 of the California Public Contract Code. Claims for overhead type expenses or costs shall be subject to audit by the State at its discretion. The costs of performing an audit examination and submitting the report shall be borne by the Contractor. The Certified Public Accountant's audit examination shall be performed in conformance with the requirements of the American Institute of Certified Public Accountants Attestation Standards. The audit examination and report shall depict the Contractor's project and company-wide financial records and shall specify the actual overall average daily rates for both field and home office overhead for the entire duration of the project, and whether the costs have been properly allocated. The rates of field and home office overhead shall exclude unallowable costs as determined in Title 48 of the Federal Acquisition Regulations, Chapter 1, Part 31. The audit examination and report shall determine if the rates of field and home office overhead are:
 - A. Allowable in conformance with the requirements in Title 48 of the Federal Acquisition Regulations, Chapter 1, Part 31.
 - B. Adequately supported by reliable documentation.
 - C. Related solely to the project under examination.
- Costs or expenses incurred by the State in reviewing or auditing claims that are not supported by the Contractor's cost accounting or other records shall be deemed to be damages incurred by the State within the meaning of the California False Claims Act.
- If the Contractor files a timely written statement of claims in response to the proposed final estimate, the District that administers the contract will submit a claim position letter to the Contractor by hand delivery or deposit in the U.S. mail within 135 days of acceptance of the contract. The claim position letter will delineate the District's position on the Contractor's claims. If the Contractor disagrees with the claim position letter, the Contractor shall submit a written notification of its disagreement and a written request to meet with the board of review, to be received by the District not later than 15 days after the Contractor's receipt of the claim position letter. The written notification of disagreement shall set forth the basis for the Contractor's disagreement and be submitted to the office designated in the claim position letter. The Contractor's failure to provide a timely written notification of disagreement or timely written request to meet with the board

of review shall constitute the Contractor's acceptance and agreement with the determinations provided in the claim position letter and with final payment pursuant to the claim position letter.

- If the Contractor files a timely notification of disagreement with the District claim position letter and a timely request to meet with the board of review, then the board of review, designated by the District Director to review claims that remain in dispute, will meet with the Contractor within 45 days after receipt by the District of the notification of disagreement.
- If the District fails to submit a claim position letter to the Contractor within 135 days after the acceptance of the contract and the Contractor has claims that remain in dispute, the Contractor may request a meeting with the board of review designated by the District Director to review claims that remain in dispute. The Contractor's request for a meeting shall identify the claims that remain in dispute. If the Contractor files a request for a meeting, the board of review will meet with the Contractor within 45 days after the District receives the request for the meeting.
- Attendance by the Contractor at the board of review meeting shall be mandatory. The board of review will review those claims and make a written recommendation thereon to the District Director. The final determination of claims, made by the District Director, will be sent to the Contractor by hand delivery or deposit in the U.S. mail. The Engineer will then make and issue the Engineer's final estimate in writing and within 30 days thereafter the State will pay the entire sum, if any, found due thereon. That final estimate shall be conclusive and binding against both parties to the contract on all questions relating to the amount of work done and the compensation payable therefor, except as otherwise provided in Sections 9-1.03C, "Records," and 9-1.09, "Clerical Errors."
- Failure of the Contractor to conform to the specified dispute procedures shall constitute a failure to pursue diligently and exhaust the administrative procedures in the contract and shall operate as a bar to arbitration in conformance with the requirements in Section 10240.2 of the California Public Contract Code.

SECTION 19: EARTHWORK

Issue Date: December 31, 2001

The third paragraph of Section 19-1.02, "Preservation of Property," of the Standard Specifications is amended to read:

• In addition to the provisions in Sections 5-1.02, "Plans and Working Drawings," and 5-1.02A, "Excavation Safety Plans," detailed plans of the protective systems for excavations on or affecting railroad property will be reviewed for adequacy of protection provided for railroad facilities, property, and traffic. These plans shall be submitted at least 9 weeks before the Contractor intends to begin excavation requiring the protective systems. Approval by the Engineer of the detailed plans for the protective systems will be contingent upon the plans being satisfactory to the railroad company involved.

SECTION 42: GROOVE AND GRIND PAVEMENT

Issue Date: December 31, 2001

The last sentence of the first subparagraph of the third paragraph in Section 42-2.02, "Construction," of the Standard Specifications is amended to read:

• After grinding has been completed, the pavement shall conform to the straightedge and profile requirements specified in Section 40-1.10, "Final Finishing."

SECTION 49: PILING

Issue Date: March 25, 2004

The first paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read:

• Foundation piles of any material shall be of such length as is required to develop the nominal resistance, to obtain the specified penetration, and to extend into the cap or footing block as shown on the plans, or specified in the special provisions.

The fourth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read:

• Modification to the specified installation methods and specified pile tip elevation will not be considered at locations where tension or lateral load demands control design pile tip elevations or when the plans state that specified pile tip elevation shall not be revised.

The sixth and seventh paragraphs in Section 49-1.03, "Determination of Length," of the Standard Specifications are amended to read:

- Indicator compression pile load testing shall conform to the requirements in ASTM Designation: D 1143. The pile shall sustain the first compression test load applied which is equal to the nominal resistance in compression, as shown on the plans, with no more than 13 mm total vertical movement at the top of the pile measured relative to the top of the pile prior to the start of compression load testing.
- Indicator tension pile load testing shall conform to the requirements in ASTM Designation: D 3689. The loading apparatus described as "Load Applied to Pile by Hydraulic Jack(s) Acting at One End of Test Beam(s) Anchored to the Pile" shall not be used. The pile shall sustain the first tension test load applied which is equal to the nominal resistance in tension, as shown on the plans, with no more than 13 mm total vertical movement at the top of the pile measured relative to the top of the pile prior to the start of tension load testing.

The ninth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is amended to read:

• For driven piling, the Contractor shall furnish piling of sufficient length to obtain both the specified tip elevation and nominal resistance shown on the plans or specified in the special provisions. For cast-in-drilled-hole concrete piling, the Contractor shall construct piling of such length to develop the nominal resistance in compression and to obtain the specified tip elevation shown on the plans or specified in the special provisions.

The tenth paragraph in Section 49-1.03, "Determination of Length," of the Standard Specifications is deleted.

The fourth paragraph in Section 49-1.04, "Load Test Piles," of the Standard Specifications is amended to read:

• Load test piles and anchor piles which are not to be incorporated in the completed structure shall be removed in conformance with the provisions in Section 15-4.02, "Removal Methods," and the remaining holes shall be backfilled with earth or other suitable material approved by the Engineer.

The first paragraph in Section 49-1.05, "Driving Equipment," of the Standard Specifications is amended to read:

• Driven piles shall be installed with impact hammers that are approved in writing by the Engineer. Impact hammers shall be steam, hydraulic, air or diesel hammers. Impact hammers shall develop sufficient energy to drive the piles at a penetration rate of not less than 3 mm per blow at the specified nominal resistance.

The seventh paragraph in Section 49-1.05, "Driving Equipment," of the Standard Specifications is amended to read:

- When necessary to obtain the specified penetration and when authorized by the Engineer, the Contractor may supply and operate one or more water jets and pumps, or furnish the necessary drilling apparatus and drill holes not greater than the least dimension of the pile to the proper depth and drive the piles therein. Jets shall not be used at locations where the stability of embankments or other improvements would be endangered. In addition, for steel piles, steel shells, or steel casings, when necessary to obtain the specified penetration or to prevent damage to the pile during installation, the Contractor shall provide special driving tips or heavier pile sections or take other measures as approved by the Engineer.
- The use of followers or underwater hammers for driving piles will be permitted if authorized in writing by the Engineer. When a follower or underwater hammer is used, its efficiency shall be verified by furnishing the first pile in each bent or footing sufficiently long and driving the pile without the use of a follower or underwater hammer.

The second paragraph in Section 49-1.07, "Driving," of the Standard Specifications is amended to read:

• Timber piles shall be fresh-headed and square and when permitted by the Engineer, the heads of the piles may be protected by means of heavy steel or wrought iron rings. During driving operations timber piling shall be restrained from lateral movement at intervals not to exceed 6 m over the length between the driving head and the ground surface. During driving operations, the timber pile shall be kept moving by continuous operation of the hammer. When the blow count exceeds either 2 times the blow count required in 300 mm, or 3 times the blow count required in 75 mm for the nominal resistance as shown on the plans, computed in conformance with the provisions in Section 49-1.08, "Pile Driving Acceptance

Criteria," additional aids shall be used to obtain the specified penetration. These aids may include the use of water jets or drilling, where permitted, or the use of a larger hammer employing a heavy ram striking with a low velocity.

Section 49-1.08, "Bearing Value and Penetration," of the Standard Specifications is amended to read:

49-1.08 PILE DRIVING ACCEPTANCE CRITERIA

- Except for piles to be load tested, driven piles shall be driven to a value of not less than the nominal resistance shown on the plans unless otherwise specified in the special provisions or permitted in writing by the Engineer. In addition, when a pile tip elevation is specified, driven piles shall penetrate at least to the specified tip elevation, unless otherwise permitted in writing by the Engineer. Piles to be load tested shall be driven to the specified tip elevation.
- When the pile nominal resistance is omitted from the plans or the special provisions, timber piles shall be driven to a nominal resistance of 800 kN, and steel and concrete piles shall be driven to a nominal resistance of 1250 kN.
- The nominal resistance for driven piles shall be determined from the following formula in which " R_u " is the nominal resistance in kilonewtons, " E_r " is the manufacturer's rating for joules of energy developed by the hammer at the observed field drop height, and "N" is the number of hammer blows in the last 300 millimeters. (maximum value to be used for N is 100):

$$R_u = (7 * (E_r)^{1/2} * log_{10} (0.83 * N)) - 550$$

Section 49-3.01, "Description," of the Standard Specifications is amended by deleting the fifth paragraph.

The sixth paragraph in Section 49-3.01, "Description," of the Standard Specifications is amended to read:

• Lifting anchors used in precast prestressed concrete piles without a class designation ending in "C" (corrosion resistant) shall be removed, and the holes filled in conformance with the provisions in Section 51-1.18A, "Ordinary Surface Finish."

The first and second paragraphs in Section 49-4.01, "Description," of the Standard Specifications are amended to read:

- Cast-in-place concrete piles shall consist of one of the following:
 - A. Steel shells driven permanently to the required nominal resistance and penetration and filled with concrete.
 - B. Steel casings installed permanently to the required penetration and filled with concrete.
 - C. Drilled holes filled with concrete.
 - D. Rock sockets filled with concrete.
- The drilling of holes shall conform to the provisions in these specifications. Concrete filling for cast-in-place concrete piles is designated by compressive strength and shall have a minimum 28-day compressive strength of 25 MPa. At the option of the Contractor, the combined aggregate grading for the concrete shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading. Concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," and Section 51, "Concrete Structures." Reinforcement shall conform to the provisions in Section 52, "Reinforcement."

The fourth paragraph in Section 49-4.03, "Drilled Holes," of the Standard Specifications is amended to read:

• After placing reinforcement and prior to placing concrete in the drilled hole, if caving occurs or deteriorated foundation material accumulates on the bottom of the hole, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean.

The first and second paragraphs in Section 49-4.04, "Steel Shells," of the Standard Specifications are amended to read:

• Steel shells shall be sufficiently watertight to exclude water during the placing of concrete. The shells may be cylindrical or tapered, step-tapered, or a combination of either, with cylindrical sections.

The first paragraph in Section 49-4.05, "Inspection," of the Standard Specifications is amended to read:

• After being driven and prior to placing reinforcement and concrete therein, the steel shells shall be examined for collapse or reduced diameter at any point. Any shell which is improperly driven or broken or shows partial collapse to such an extent as to materially decrease its nominal resistance will be rejected. Rejected shells shall be removed and replaced, or a new shell shall be driven adjacent to the rejected shell. Rejected shells which cannot be removed shall be filled with concrete by the Contractor at the Contractor's expense. When a new shell is driven to replace a rejected shell, the Contractor, at the Contractor's expense, shall enlarge the footing as determined necessary by the Engineer.

The third paragraph in Section 49-5.01, "Description," of the Standard Specifications is amended to read:

- Steel pipe piles shall conform to the following requirements:
 - 1. Steel pipe piles less than 360 mm in diameter shall conform to the requirements in ASTM Designation: A 252, Grade 2 or 3.
 - 2. Steel pipe piles 360 mm and greater in diameter shall conform to the requirements in ASTM Designation: A 252, Grade 3.
 - 3. Steel pipe piles shall be of the nominal diameter and nominal wall thickness shown on the plans or specified in the special provisions.
 - 4. The carbon equivalency (CE) of steel for steel pipe piles, as defined in AWS D 1.1, Section XI5.1, shall not exceed 0.45.
 - 5. The sulfur content of steel for steel pipe piles shall not exceed 0.05-percent.
 - 6. Seams in steel pipe piles shall be complete penetration welds.

The third paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read:

• The contract price paid per meter for cast-in-drilled-hole concrete piling shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in drilling holes, disposing of material resulting from drilling holes, temporarily casing holes and removing water when necessary, furnishing and placing concrete and reinforcement, and constructing reinforced concrete extensions, complete in place, to the required penetration, as shown on the plans, as specified in these specifications and in the special provisions, and as directed by the Engineer.

The seventh paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read

• The contract unit price paid for drive pile shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in driving timber, concrete and steel piles, driving steel shells for cast-in-place concrete piles, placing filling materials for cast-in-place concrete piles and cutting off piles, all complete in place to the required nominal resistance and penetration as shown on the plans and as specified in these specifications and the special provisions, and as directed by the Engineer.

The ninth paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read:

• Full compensation for all jetting, drilling, providing special driving tips or heavier sections for steel piles or shells, or other work necessary to obtain the specified penetration and nominal resistance of the piles, for predrilling holes through embankment and filling the space remaining around the pile with sand or pea gravel, for disposing of material resulting from jetting, drilling or predrilling holes, and for all excavation and backfill involved in constructing concrete extensions as shown on the plans, and as specified in these specifications and the special provisions, and as directed by the Engineer shall be considered as included in the contract unit price paid for drive pile or in the contract price paid per meter for cast-in-drilled-hole concrete piling, and no additional compensation will be allowed therefor.

Section 49-6.02, "Payment," of the Standard Specifications is amended by adding the following paragraphs:

Full compensation for furnishing and placing additional testing reinforcement, for load test anchorages, and for cutting off test piles, shall be considered as included in the contract price paid for piling of the type or class shown in the Engineer's Estimate, and no additional compensation will be allowed.

No additional compensation or extension of time will be made for additional foundation investigation, installation and testing of indicator piling, cutting off piling and restoring the foundation investigation and indicator pile sites, and review of request by the Engineer

SECTION 50: PRESTRESSING CONCRETE

Issue Date: November 18, 2002

Section 50-1.02, "Drawings," of the Standard Specifications is amended by adding the following paragraph after the second paragraph:

• Each working drawing submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate working drawing submittal.

Section 50-1.05, "Prestressing Steel," of the Standard Specifications is amended to read:

- Prestressing steel shall be high-tensile wire conforming to the requirements in ASTM Designation: A 421, including Supplement I; high-tensile seven-wire strand conforming to the requirements in ASTM Designation: A 416; or uncoated high-strength steel bars conforming to the requirements in ASTM Designation: A 722, including all supplementary requirements. The maximum mass requirement of ASTM Designation: A 722 will not apply.
- In addition to the requirements of ASTM Designation: A 722, for deformed bars, the reduction of area shall be determined from a bar from which the deformations have been removed. The bar shall be machined no more than necessary to remove the deformations over a length of 300 mm, and reduction will be based on the area of the machined portion.
- In addition to the requirements specified herein, epoxy-coated seven-wire prestressing steel strand shall be grit impregnated and filled in conformance with the requirements in ASTM Designation: A 882/A 882M, including Supplement I, and the following:
 - A. The coating material shall be on the Department's list of approved coating materials for epoxy-coated strand, available from the Transportation Laboratory.
 - B. The film thickness of the coating after curing shall be 381 μ m to 1143 μ m.
 - C. Prior to coating the strand, the Contractor shall furnish to the Transportation Laboratory a representative 230-g sample from each batch of epoxy coating material to be used. Each sample shall be packaged in an airtight container identified with the manufacturer's name and batch number.
 - D. Prior to use of the epoxy-coated strand in the work, written certifications referenced in ASTM Designation: A 882/A 882M, including a representative load-elongation curve for each size and grade of strand to be used and a copy of the quality control tests performed by the manufacturer, shall be furnished to the Engineer.
 - E. In addition to the requirements in Section 50-1.10, "Samples for Testing," four 1.5-m long samples of coated strand and one 1.5-m long sample of uncoated strand of each size and reel shall be furnished to the Engineer for testing. These samples, as selected by the Engineer, shall be representative of the material to be used in the work.
 - F. Epoxy-coated strand shall be cut using an abrasive saw.
 - G. All visible damage to coatings caused by shipping and handling, or during installation, including cut ends, shall be repaired in conformance with the requirements in ASTM Designation: A 882/A 882M. The patching material shall be furnished by the manufacturer of the epoxy powder and shall be applied in conformance with the manufacturer's written recommendations. The patching material shall be compatible with the original epoxy coating material and shall be inert in concrete.
 - All bars in any individual member shall be of the same grade, unless otherwise permitted by the Engineer.
- When bars are to be extended by the use of couplers, the assembled units shall have a tensile strength of not less than the manufacturer's minimum guaranteed ultimate tensile strength of the bars. Failure of any one sample to meet this requirement will be cause for rejection of the heat of bars and lot of couplers. The location of couplers in the member shall be subject to approval by the Engineer.
- Wires shall be straightened if necessary to produce equal stress in all wires or wire groups or parallel lay cables that are to be stressed simultaneously or when necessary to ensure proper positioning in the ducts.
- Where wires are to be button-headed, the buttons shall be cold formed symmetrically about the axes of the wires. The buttons shall develop the minimum guaranteed ultimate tensile strength of the wire. No cold forming process shall be used that causes indentations in the wire. Buttonheads shall not contain wide open splits, more than 2 splits per head, or splits not parallel with the axis of the wire.
- Prestressing steel shall be protected against physical damage and rust or other results of corrosion at all times from manufacture to grouting or encasing in concrete. Prestressing steel that has sustained physical damage at any time shall be rejected. The development of visible rust or other results of corrosion shall be cause for rejection, when ordered by the Engineer.

- Epoxy-coated prestressing steel strand shall be covered with an opaque polyethylene sheeting or other suitable protective material to protect the strand from exposure to sunlight, salt spray, and weather. For stacked coils, the protective covering shall be draped around the perimeter of the stack. The covering shall be adequately secured; however, it should allow for air circulation around the strand to prevent condensation under the covering. Epoxy-coated strand shall not be stored within 300 m of ocean or tidal water for more than 2 months.
- Prestressing steel shall be packaged in containers or shipping forms for the protection of the steel against physical damage and corrosion during shipping and storage. Except for epoxy-coated strand, a corrosion inhibitor which prevents rust or other results of corrosion, shall be placed in the package or form, or shall be incorporated in a corrosion inhibitor carrier type packaging material, or when permitted by the Engineer, may be applied directly to the steel. The corrosion inhibitor shall have no deleterious effect on the steel or concrete or bond strength of steel to concrete. Packaging or forms damaged from any cause shall be immediately replaced or restored to original condition.
- The shipping package or form shall be clearly marked with a statement that the package contains high-strength prestressing steel, and the type of corrosion inhibitor used, including the date packaged.
- Prestressing steel for post-tensioning which is installed in members prior to placing and curing of the concrete, and which is not epoxy-coated, shall be continuously protected against rust or other results of corrosion, until grouted, by means of a corrosion inhibitor placed in the ducts or applied to the steel in the duct. The corrosion inhibitor shall conform to the provisions specified herein.
- When steam curing is used, prestressing steel for post-tensioning shall not be installed until the steam curing is completed.
- Water used for flushing ducts shall contain either quick lime (calcium oxide) or slaked lime (calcium hydroxide) in the amount of 0.01-kg/L. Compressed air used to blow out ducts shall be oil free.
- When prestressing steel for post-tensioning is installed in the ducts after completion of concrete curing, and if stressing and grouting are completed within 10 days after the installation of the prestressing steel, rust which may form during those 10 days will not be cause for rejection of the steel. Prestressing steel installed, tensioned, and grouted in this manner, all within 10 days, will not require the use of a corrosion inhibitor in the duct following installation of the prestressing steel. Prestressing steel installed as above but not grouted within 10 days shall be subject to all the requirements in this section pertaining to corrosion protection and rejection because of rust. The requirements in this section pertaining to tensioning and grouting within 10 days shall not apply to epoxy-coated prestressing steel strand.
- Any time prestressing steel for pretensioning is placed in the stressing bed and is exposed to the elements for more than 36 hours prior to encasement in concrete, adequate measures shall be taken by the Contractor, as approved by the Engineer, to protect the steel from contamination or corrosion.
- After final fabrication of the seven-wire prestressing steel strand, no electric welding of any form shall be performed on the prestressing steel. Whenever electric welding is performed on or near members containing prestressing steel, the welding ground shall be attached directly to the steel being welded.
- Pretensioned prestressing steel shall be cut off flush with the end of the member. For epoxy-coated prestressing steel, only abrasive saws shall be used to cut the steel. The exposed ends of the prestressing steel and a 25-mm strip of adjoining concrete shall be cleaned and painted. Cleaning shall be by wire brushing or abrasive blast cleaning to remove all dirt and residue on the metal or concrete surfaces. Immediately after cleaning, the surfaces shall be covered with one application of unthinned zinc-rich primer (organic vehicle type) conforming to the provisions in Section 91, "Paint," except that 2 applications shall be applied to surfaces which will not be covered by concrete or mortar. Aerosol cans shall not be used. The paint shall be thoroughly mixed at the time of application and shall be worked into any voids in the prestressing tendons.

The thirteenth paragraph in Section 50-1.08, "Prestressing," of the Standard Specifications is amended to read:

• Prestressing steel in pretensioned members shall not be cut or released until the concrete in the member has attained a compressive strength of not less than the value shown on the plans or 28 MPa, whichever is greater. In addition to these concrete strength requirements, when epoxy-coated prestressing steel strand is used, the steel shall not be cut or released until the temperature of the concrete surrounding the strand is less than 65°C, and falling.

The fifth paragraph in Section 50-1.10, "Samples for Testing," of the Standard Specifications is amended to read:

- The following samples of materials and tendons, selected by the Engineer from the prestressing steel at the plant or jobsite, shall be furnished by the Contractor to the Engineer well in advance of anticipated use:
 - A. For wire or bars, one 2-m long sample and for strand, one 1.5-m long sample, of each size shall be furnished for each heat or reel.
 - B. For epoxy-coated strand, one 1.5-m long sample of uncoated strand of each size shall be furnished for each reel.

C. If the prestressing tendon is a bar, one 2-m long sample shall be furnished and in addition, if couplers are to be used with the bar, two 1.25-m long samples of bar, equipped with one coupler and fabricated to fit the coupler, shall be furnished.

The second paragraph in Section 50-1.11, "Payment," of the Standard Specifications is amended to read:

• The contract lump sum prices paid for prestressing cast-in-place concrete of the types listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in furnishing, placing, and tensioning the prestressing steel in cast-in-place concrete structures, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer.

SECTION 51: CONCRETE STRUCTURES

Issue Date: December 23, 2003

The eleventh paragraph in Section 51-1.05, "Forms," of the Standard Specifications is amended to read:

• Form panels for exposed surfaces shall be furnished and placed in uniform widths of not less than 0.9-m and in uniform lengths of not less than 1.8 m, except at the end of continuously formed surfaces where the final panel length required is less than 1.8 m. Where the width of the member formed is less than 0.9-m, the width of the panels shall be not less than the width of the member. Panels shall be arranged in symmetrical patterns conforming to the general lines of the structure. Except when otherwise provided herein or shown on the plans, panels for vertical surfaces shall be placed with the long dimension horizontal and with horizontal joints level and continuous. Form panels for curved surfaces of columns shall be continuous for a minimum of one quarter of the circumference, or 1.8 m. For walls with sloping footings which do not abut other walls, panels may be placed with the long dimension parallel to the footing. Form panels on each side of the panel joint shall be precisely aligned, by means of supports or fasteners common to both panels, to result in a continuous unbroken concrete plane surface. When prefabricated soffit panels are used, form filler panels joining prefabricated panels shall have a uniform minimum width of 0.3-m and shall produce a smooth uniform surface with consistent longitudinal joint lines between the prefabricated panels.

The first and second paragraph in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications are amended to read:

- The Contractor shall submit to the Engineer working drawings and design calculations for falsework proposed for use at bridges. For bridges where the height of any portion of the falsework, as measured from the ground line to the soffit of the superstructure, exceeds 4.25 m; or where any individual falsework clear span length exceeds 4.85 m; or where provision for vehicular, pedestrian, or railroad traffic through the falsework is made; the drawings shall be signed by an engineer who is registered as a Civil Engineer in the State of California. Six sets of the working drawings and 2 copies of the design calculations shall be furnished. Additional working drawings and design calculations shall be submitted to the Engineer when specified in "Railroad Relations and Insurance" of the special provisions.
- The falsework drawings shall include details of the falsework erection and removal operations showing the methods and sequences of erection and removal and the equipment to be used. The details of the falsework erection and removal operations shall demonstrate the stability of all or any portions of the falsework during all stages of the erection and removal operations.

The seventh paragraph in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications is amended to read:

• In the event that several falsework plans are submitted simultaneously, or an additional plan is submitted for review before the review of a previously submitted plan has been completed, the Contractor shall designate the sequence in which the plans are to be reviewed. In such event, the time to be provided for the review of any plan in the sequence shall be not less than the review time specified above for that plan, plus 2 weeks for each plan of higher priority which is still under review. A falsework plan submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate falsework plan submittal.

Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications is amended by adding the following paragraphs:

- If structural composite lumber is proposed for use, the falsework drawings shall clearly identify the structural composite lumber members by grade (E value), species, and type. The Contractor shall provide technical data from the manufacturer showing the tabulated working stress values of the composite lumber. The Contractor shall furnish a certificate of compliance as specified in Section 6-1.07, "Certificates of Compliance," for each delivery of structural composite lumber to the project site.
- For falsework piles with a calculated loading capacity greater than 900 kN, the falsework piles shall be designed by an engineer who is registered as either a Civil Engineer or a Geotechnical Engineer in the State of California, and the calculations shall be submitted to the Engineer.

The first paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read:

• The design load for falsework shall consist of the sum of dead and live vertical loads, and an assumed horizontal load. The minimum total design load for any falsework, including members that support walkways, shall be not less than 4800 N/m^2 for the combined live and dead load regardless of slab thickness.

The eighth paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read:

• In addition to the minimum requirements specified in this Section 51-1.06A, falsework for box girder structures with internal falsework bracing systems using flexible members capable of withstanding tensile forces only, shall be designed to include the vertical effects caused by the elongation of the flexible member and the design horizontal load combined with the dead and live loads imposed by concrete placement for the girder stems and connected bottom slabs. Falsework comprised of individual steel towers with bracing systems using flexible members capable of withstanding tensile forces only to resist overturning, shall be exempt from these additional requirements.

The third paragraph in Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended to read:

• When falsework is supported on piles, the piles shall be driven and the actual nominal resistance assessed in conformance with the provisions in Section 49, "Piling."

Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended by adding the following paragraphs:

- For falsework piles with a calculated nominal resistance greater than 1800 kN, the Contractor shall conduct dynamic monitoring of pile driving and generate field acceptance criteria based on a wave equation analysis. These analyses shall be signed by an engineer who is registered as a Civil Engineer in the State of California and submitted to the Engineer prior to completion of falsework erection.
- Prior to the placement of falsework members above the stringers, the final bracing system for the falsework shall be installed.

Section 51-1.06C, "Removing Falsework," of the Standard Specifications is amended by adding the following paragraph:

• The falsework removal operation shall be conducted in such a manner that any portion of the falsework not yet removed remains in a stable condition at all times.

The sixth paragraph in Section 51-1.09, "Placing Concrete," of the Standard Specifications is amended to read:

• Vibrators used to consolidate concrete containing epoxy-coated bar reinforcement or epoxy-coated prestressing steel shall have a resilient covering to prevent damage to the epoxy-coating on the reinforcement or prestressing steel.

The third sentence of the fourth paragraph in Section 51-1.12D, "Sheet Packing, Preformed Pads and Board Fillers," of the Standard Specifications is amended to read:

Surfaces of expanded polystyrene against which concrete is placed shall be faced with hardboard.

The table in the ninth paragraph of Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads," of the Standard Specifications is amended to read:

Tensile strength, percent	-15
Elongation at break, percent	-40; but not less than 300% total
	elongation of the material
Hardness, points	+10

The first sentence of the fourth paragraph in Section 51-1.17, "Finish Bridge Decks," of the Standard Specifications is amended to read:

• The smoothness of completed roadway surfaces of structures, approach slabs and the adjacent 15 m of approach pavement, and the top surfaces of concrete decks which are to be covered with another material, will be tested by the Engineer with a bridge profilograph in conformance with the requirements in California Test 547 and the requirements herein.

Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications is amended by deleting the seventh, thirteenth and fourteenth paragraphs.

The fourteenth paragraph in Section 51-1.23, "Payment," of the Standard Specifications is amended by deleting "and injecting epoxy in cracks".

SECTION 52: REINFORCEMENT

Issue Date: March 25, 2004

The third paragraph in Section 52-1.04, "Inspection," of the Standard Specifications is amended to read:

• A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall also be furnished for each shipment of epoxy-coated bar reinforcement or wire reinforcement certifying that the coated reinforcement conforms to the requirements in ASTM Designation: A 775/A 775M or A 884/A 884M, respectively, and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement." The Certificate of Compliance shall include all of the certifications specified in ASTM Designation: A 775/A 775M or A 884/A 884M respectively, and a statement that the coating material has been prequalified by acceptance testing performed by the Valley Forge Laboratories, Inc., Devon, Pennsylvania.

Section 52-1.07 "Placing," of the Standard Specifications is amended to read by deleting item C of the third paragraph.

Section 52-1.08 "Splicing," of the Standard Specifications is amended to read:

52-1.08 SPLICING

- Splices of reinforcing bars shall consist of lap splices, service splices, or ultimate butt splices.
- Splicing of reinforcing bars will not be permitted at a location designated on the plans as a "No-Splice Zone." At the option of the Contractor, reinforcing bars may be continuous at locations where splices are shown on the plans. The location of splices, except where shown on the plans, shall be determined by the Contractor using available commercial lengths where practicable.
- Unless otherwise shown on the plans, splices in adjacent reinforcing bars at any particular section shall be staggered. The minimum distance between staggered lap splices or mechanical lap splices shall be the same as the length required for a lap splice in the largest bar. The minimum distance between staggered butt splices shall be 600 mm, measured between the midpoints of the splices along a line which is centered between the axes of the adjacent bars.

52-1.08A Lap Splicing Requirements

- Splices made by lapping shall consist of placing reinforcing bars in contact and wiring them together, maintaining the alignment of the bars and the minimum clearances. Should the Contractor elect to use a butt welded or mechanical splice at a location not designated on the plans as requiring a service or ultimate butt splice, this splice shall conform to the testing requirements for service splice.
- Reinforcing bars shall not be spliced by lapping at locations where the concrete section is not sufficient to provide a minimum clear distance of 50 mm between the splice and the nearest adjacent bar. The clearance to the surface of the concrete specified in Section 52-1.07, "Placing," shall not be reduced.
 - Reinforcing bars Nos. 43 and 57 shall not be spliced by lapping.

- Where ASTM Designations: A 615/A 615M, Grade 420 or A 706/A 706M reinforcing bars are required, the length of lap splices shall be as follows: Reinforcing bars No. 25 or smaller shall be lapped at least 45 diameters of the smaller bar joined; and reinforcing bars Nos. 29, 32, and 36 shall be lapped at least 60 diameters of the smaller bar joined, except when otherwise shown on the plans.
- Where ASTM Designation: A 615/A 615M, Grade 280 reinforcing bars are permitted, the length of lap splices shall be as follows: Reinforcing bars No. 25 or smaller shall be lapped at least 30 diameters of the smaller bar joined; and reinforcing bars Nos. 29, 32, and 36 shall be lapped at least 45 diameters of the smaller bar joined, except when otherwise shown on the plans.
 - Splices in bundled bars shall conform to the following:
 - A In bundles of 2 bars, the length of the lap splice shall be the same as the length of a single bar lap splice.
 - B. In bundles of 3 bars, the length of the lap splice shall be 1.2 times the length of a single bar lap splice.
- Welded wire fabric shall be lapped such that the overlap between the outermost cross wires is not less than the larger of:
 - A. 150 mm,
 - B. The spacing of the cross wires plus 50 mm, or
 - C. The numerical value of the longitudinal wire size (MW-Size Number) times 370 divided by the spacing of the longitudinal wires in millimeters.

52-1.08B Service Splicing and Ultimate Butt Splicing Requirements

• Service splices and ultimate butt splices shall be either butt welded or mechanical splices, shall be used at the locations shown on the plans, and shall conform to the requirements of these specifications and the special provisions.

52-1.08B(1) Mechanical Splices

- Mechanical splices to be used in the work shall be on the Department's current prequalified list before use. The prequalified list can be obtained from the Department's internet site listed in the special provisions or by contacting the Transportation Laboratory directly.
- When tested in conformance with the requirements in California Test 670, the total slip of the reinforcing bars within the splice device after loading in tension to 200 MPa and relaxing to 20 MPa shall not exceed the values listed in the following table. The slip shall be measured between gage points that are clear of the splice device.

Reinforcing Bar Number	Total Slip (μm)
13	250
16	250
19	250
22	350
25	350
29	350
32	450
36	450
43	600
57	750

- Slip requirements shall not apply to mechanical lap splices, splices that are welded, or splices that are used on hoops.
- Splicing procedures shall be in conformance with the manufacturer's recommendations, except as modified in this section. Splices shall be made using the manufacturer's standard equipment, jigs, clamps, and other required accessories.
- Splice devices shall have a clear coverage of not less than 40 mm measured from the surface of the concrete to the outside of the splice device. Stirrups, ties, and other reinforcement shall be adjusted or relocated, and additional reinforcement shall be placed, if necessary, to provide the specified clear coverage to reinforcement.
- The Contractor shall furnish the following information for each shipment of splice material in conformance with the provisions in Section 6-1.07, "Certificates of Compliance:"
 - A. The type or series identification of the splice material including tracking information for traceability.
 - B. The bar grade and size number to be spliced.

- C. A copy of the manufacturer's product literature giving complete data on the splice material and installation procedures.
- D. A statement that the splicing systems and materials used in conformance with the manufacturer's installation procedures will develop the required tensile strengths, based on the nominal bar area, and will conform to the total slip requirements and the other requirements in these specifications.
- E. A statement that the splice material conforms to the type of mechanical splice in the Department's current prequalified list.

52-1.08B(2) Butt Welded Splices

- Except for resistance butt welds, butt welded splices of reinforcing bars shall be complete joint penetration butt welds conforming to the requirements in AWS D 1.4, and these specifications.
 - Welders and welding procedures shall be qualified in conformance with the requirements in AWS D 1.4.
- Only the joint details and dimensions as shown in Figure 3.2, "Direct Butt Joints," of AWS D 1.4, shall be used for making complete joint penetration butt welds of bar reinforcement. Split pipe backing shall not be used.
- Butt welds shall be made with multiple weld passes using a stringer bead without an appreciable weaving motion. The maximum stringer bead width shall be 2.5 times the diameter of the electrode and slagging shall be performed between each weld pass. Weld reinforcement shall not exceed 4 mm in convexity.
 - Electrodes used for welding shall meet the minimum Charpy V-notch impact requirement of 27°J at -20°C.
- For welding of bars conforming to the requirements of ASTM Designation: A 615/A 615M, Grade 280 or Grade 420, the requirements of Table 5.2, "Minimum Preheat and Interpass Temperatures," of AWS D 1.4 are superseded by the following:

The minimum preheat and interpass temperatures shall be 200°C for Grade 280 bars and 300°C for Grade 420 bars. Immediately after completing the welding, at least 150 mm of the bar on each side of the splice shall be covered by an insulated wrapping to control the rate of cooling. The insulated wrapping shall remain in place until the bar has cooled below 90°C.

- When welding different grades of reinforcing bars, the electrode shall conform to Grade 280 bar requirements and the preheat shall conform to the Grade 420 bar requirements.
- In the event that any of the specified preheat, interpass, and post weld cooling temperatures are not met, all weld and heat affected zone metal shall be removed and the splice rewelded.
- Welding shall be protected from air currents, drafts, and precipitation to prevent loss of heat or loss of arc shielding. The method of protecting the welding area from loss of heat or loss of arc shielding shall be subject to approval by the Engineer.
 - Reinforcing bars shall not be direct butt spliced by thermite welding.
- Procedures to be used in making welded splices in reinforcing bars, and welders employed to make splices in reinforcing bars, shall be qualified by tests performed by the Contractor on sample splices of the type to be used, before making splices to be used in the work.

52-1.08B(3) Resistance Butt Welds

- Shop produced resistance butt welds shall be produced by a fabricator who is approved by the Transportation Laboratory. The list of approved fabricators can be obtained from the Department's internet site or by contacting the Transportation Laboratory directly.
- Before manufacturing hoops using resistance butt welding, the Contractor shall submit to the Engineer the manufacturer's Quality Control (QC) manual for the fabrication of hoops. As a minimum, the QC manual shall include the following:
 - A. The pre-production procedures for the qualification of material and equipment.
 - B. The methods and frequencies for performing QC procedures during production.
 - C. The calibration procedures and calibration frequency for all equipment.
 - D. The welding procedure specification (WPS) for resistance welding.
 - E. The method for identifying and tracking lots.

52-1.08C Service Splice and Ultimate Butt Splice Testing Requirements

• The Contractor shall designate in writing a splicing Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for 1) the quality of all service and ultimate butt splicing including the inspection of materials and workmanship performed by the Contractor and all subcontractors; and 2) submitting, receiving, and approving all correspondence, required submittals, and reports regarding service and ultimate splicing to and from the Engineer.

- The QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor.
- Testing on prequalification and production sample splices shall be performed at the Contractor's expense, at an independent qualified testing laboratory. The laboratory shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors who will provide other services or materials for the project, and shall have the following:
 - A. Proper facilities, including a tensile testing machine capable of breaking the largest size of reinforcing bar to be tested with minimum lengths as shown in this section.
 - B. A device for measuring the total slip of the reinforcing bars across the splice to the nearest 25 μm, that, when placed parallel to the longitudinal axis of the bar is able to simultaneously measure movement across the splice, at 2 locations, 180 degrees apart.
 - C. Operators who have received formal training for performing the testing requirements of ASTM Designation: A 370 and California Test 670.
 - D. A record of annual calibration of testing equipment performed by an independent third party that has 1) standards that are traceable to the National Institute of Standards and Technology, and 2) a formal reporting procedure, including published test forms.
- The Contractor shall provide samples for quality assurance testing in conformance with the provisions in these specifications and the special provisions.
- Prequalification and production sample splices shall be 1) a minimum length of 1.5 meters for reinforcing bars No. 25 or smaller, and 2 meters for reinforcing bars No. 29 or larger, with the splice located at mid-point; and 2) suitably identified before shipment with weatherproof markings that do not interfere with the Engineer's tamper-proof markings or seals. Splices that shows signs of tampering will be rejected.
- Each set or sample splice, as defined herein, shall be identified as representing either a prequalification or production test sample splice.
- For the purpose of production testing, a lot of either service splices or ultimate butt splices is defined as 1) 150, or fraction thereof, of the same type of mechanical splices used for each bar size and each bar deformation pattern that is used in the work, or 2) 150, or fraction thereof, of complete joint penetration butt welded splices, or resistance butt welded splices for each bar size used in the work. If different diameters of hoop reinforcement are shown on the plans, separate lots shall be used for each different hoop diameter.
- Whenever a lot of splices is rejected, the rejected lot and subsequent lots of splices shall not be used in the work until 1) the QCM performs a complete review of the Contractor's quality control process for these splices, 2) a written report is submitted to the Engineer describing the cause of failure for the splices in this lot and provisions for preventing similar failures in future lots, and 3) the Engineer has provided the Contractor with written notification that the report is acceptable. The Engineer shall have 3 working days after receipt of the report to provide notification to the Contractor. In the event the Engineer fails to provide notification within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in providing notification, the Contractor will be compensated for any resulting loss, and an extension of time will be granted in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

52-1.08C(1) Splice Pregualification Report

- Before using any service splices or ultimate butt splices in the work, the Contractor shall submit a Splice Prequalification Report. The report shall include splice material information, names of the operators who will be performing the splicing, and descriptions of the positions, locations, equipment, and procedures that will be used in the work.
- The Splice Prequalification Report shall also include certifications from the fabricator for prequalifications of operators and procedures based on sample tests performed no more than 2 years before submitting the report. Each operator shall be certified by performing 2 sample splices for each bar size of each splice type that the operator will be performing in the work. For deformation-dependent types of splice devices, each operator shall be certified by performing 2 additional samples for each bar size and deformation pattern that will be used in the work.
- Prequalification sample splices shall be tested by an independent qualified testing laboratory and shall conform to the appropriate production test criteria and slip requirements specified herein. When epoxy-coated reinforcement is required, resistance butt welded sample splices shall have the weld flash removed by the same procedure as will be used in the work, before coating and testing. The Splice Prequalification Report shall include the certified test results for all prequalification sample splices.

• The QCM shall review and approve the Splice Prequalification Report before submitting it to the Engineer for approval. The Contractor shall allow 2 weeks for the review and approval of a complete report before performing any service splicing or ultimate butt splicing in the work. In the event the Engineer fails to complete the review within the time allowed, and in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

52-1.08C(2) Service Splice Test Criteria

• Service production and quality assurance sample splices shall be tensile tested in conformance with the requirements in ASTM Designation: A 370 and California Test 670 and shall develop a minimum tensile strength of not less than 550 MPa.

52-1.08C(2)(a) Production Test Requirements for Service Splices

- Production tests shall be performed by the Contractor's independent laboratory for all service splices used in the work. A production test shall consist of testing 4 sample splices prepared for each lot of completed splices. The samples shall be prepared by the Contractor using the same splice material, position, operators, location, and equipment, and following the same procedure as used in the work.
- At least one week before testing, the Contractor shall notify the Engineer in writing of the date when and the location where the testing of the samples will be performed.
- The 4 samples from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the independent laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 samples of splices shall not be tested.
- Before performing any tensile tests on production test sample splices, one of the 4 samples shall be tested for, and shall conform to, the requirements for total slip. Should this sample not meet the total slip requirements, one retest, in which the 3 remaining samples are tested for total slip, will be allowed. Should any of the 3 remaining samples not conform to the total slip requirements, all splices in the lot represented by this production test will be rejected.
- If 3 or more sample splices from a production test conform to the provisions in this Section 52-1.08C(2),"Service Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable, provided each of the 4 samples develop a minimum tensile strength of not less than 420 MPa.
- Should only 2 sample splices from a production test conform to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," one additional production test shall be performed on the same lot of splices. This additional production test shall consist of testing 4 samples splices that have been randomly selected by the Engineer and removed by the Contractor from the actual completed lot of splices. Should any of the 4 splices from this additional test fail to conform to these provisions, all splices in the lot represented by these production tests will be rejected.
- If only one sample splice from a production test conforms to the provisions in this Section 52-1.08C(2), "Service Splice Test Criteria," all splices in the lot represented by this production test will be rejected.
- If a production test for a lot fails, the Contractor shall repair or replace all reinforcing bars from which sample splices were removed before the Engineer selects additional splices from this lot for further testing.

52-1.08C(2)(b) Quality Assurance Test Requirements for Service Splices

- For the first production test performed, and for at least one, randomly selected by the Engineer, of every 5 subsequent production tests, or portion thereof, the Contractor shall concurrently prepare 4 additional service quality assurance sample splices. These service quality assurance sample splices shall be prepared in the same manner as specified herein for service production sample splices.
- These 4 additional quality assurance sample splices shall be shipped to the Transportation Laboratory for quality assurance testing. The 4 sample splices shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 samples of splices will not be tested. Sample splices not accompanied by the supporting documentation required in Section 52-1.08B(1), for mechanical splices, or in Section 52-1.08B(3), for resistance butt welds, will not be tested.
- Quality assurance testing will be performed in conformance with the requirements for service production sample splices in Section 52-1.08C(2)(a), "Production Test Requirements for Service Splices."

52-1.08C(3) Ultimate Butt Splice Test Criteria

- Ultimate production and quality assurance sample splices shall be tensile tested in conformance with the requirements described in ASTM Designation: A 370 and California Test 670.
- A minimum of one control bar shall be removed from the same bar as, and adjacent to, all ultimate production, and quality assurance sample splices. Control bars shall be 1) a minimum length of one meter for reinforcing bars No. 25 or smaller and 1.5 meters for reinforcing bars No. 29 or larger, and 2) suitably identified before shipment with weatherproof

markings that do not interfere with the Engineer's tamper-proof markings or seals. The portion of adjacent bar remaining in the work shall also be identified with weatherproof markings that correspond to its adjacent control bar.

- Each sample splice and its associated control bar shall be identified and marked as a set. Each set shall be identified as representing a prequalification, production, or quality assurance sample splice.
- The portion of hoop reinforcing bar, removed to obtain a sample splice and control bar, shall be replaced using a prequalified ultimate mechanical butt splice, or the hoop shall be replaced in kind.
- Reinforcing bars, other than hoops, from which sample splices are removed, shall be repaired using ultimate mechanical butt splices conforming to the provisions in Section 52-1.08C(1), "Splice Prequalification Report," or the bars shall be replaced in kind. These bars shall be repaired or replaced such that no splices are located in any "No Splice Zone" shown on the plans.
- Ultimate production and quality assurance sample splices shall rupture in the reinforcing bar either: 1) outside of the affected zone or 2) within the affected zone, provided that the sample splice has achieved at least 95 percent of the ultimate tensile strength of the control bar associated with the sample splice. In addition, necking of the bar shall be visibly evident at rupture regardless of whether the bar breaks inside or outside the affected zone.
- The affected zone is the portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or material characteristics, have been altered by fabrication or installation of the splice.
- The ultimate tensile strength shall be determined for all control bars by tensile testing the bars to rupture, regardless of where each sample splice ruptures. If 2 control bars are tested for one sample splice, the bar with the lower ultimate tensile strength shall be considered the control bar.

52-1.08C(3)(a) Production Test Requirements for Ultimate Butt Splices

- Production tests shall be performed for all ultimate butt splices used in the work. A production test shall consist of testing 4 sets of sample splices and control bars removed from each lot of completed splices, except when quality assurance tests are performed.
- After the splices in a lot have been completed, and the bars have been epoxy-coated when required, the QCM shall notify the Engineer in writing that the splices in this lot conform to the specifications and are ready for testing. Except for hoops, sample splices will be selected by the Engineer at the job site. Sample splices for hoops will be selected by the Engineer either at the job site or a fabrication facility.
- After notification has been received, the Engineer will randomly select the 4 sample splices to be removed from the lot and place tamper-proof markings or seals on them. The Contractor shall select the adjacent control bar for each sample splice bar, and the Engineer will place tamper-proof markings or seals on them. These ultimate production sample splices and control bars shall be removed by the Contractor, and tested by an independent qualified testing laboratory.
- At least one week before testing, the Contractor shall notify the Engineer in writing of the date when and the location where the testing of the samples will be performed.
- A sample splice or control bar from any set will be rejected if a tamper-proof marking or seal is disturbed before testing.
- The 4 sets from each production test shall be securely bundled together and identified with a completed sample identification card before shipment to the independent laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 sets of splices shall not be tested.
- Before performing any tensile tests on production test sample splices, one of the 4 sample splices shall be tested for, and shall conform to, the requirements for total slip. Should this sample splice not meet these requirements, one retest, in which the 3 remaining sample splices are tested for total slip, will be allowed. Should any of the 3 remaining sample splices not conform to these requirements, all splices in the lot represented by this production test will be rejected.
- If 3 or more sample splices from a production test conform to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," all splices in the lot represented by this production test will be considered acceptable.
- Should only 2 sample splices from a production test conform to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," one additional production test shall be performed on the same lot of splices. Should any of the 4 sample splices from this additional test fail to conform to these provisions, all splices in the lot represented by these production tests will be rejected.
- If only one sample splice from a production test conforms to the provisions in Section 52-1.08C(3), "Ultimate Butt Splice Test Criteria," all splices in the lot represented by this production test will be rejected.
- If a production test for a lot fails, the Contractor shall repair or replace all reinforcing bars from which sample splices were removed, complete in place, before the Engineer selects additional splices from this lot for further testing.
- Production tests will not be required on repaired splices from a lot, regardless of the type of prequalified ultimate mechanical butt splice used to make the repair. However, should an additional production test be required, the Engineer may select any repaired splice for the additional production test.

52-1.08C(3)(b) Quality Assurance Test Requirements for Ultimate Butt Splices

- For the first production test performed, and for at least one, randomly selected by the Engineer, of every 5 subsequent production tests, or portion thereof, the Contractor shall concurrently prepare 4 additional ultimate quality assurance sample splices along with associated control bars.
- Each time 4 additional ultimate quality assurance sample splices are prepared, 2 of these quality assurance sample splice and associated control bar sets and 2 of the production sample splice and associated control bar sets, together, shall conform to the requirements for ultimate production sample splices in Section 52-1.08C(3)(a),"Production Test Requirements for Ultimate Butt Splices."
- The 2 remaining quality assurance sample splice and associated control bar sets, along with the 2 remaining production sample splice and associated control bar sets shall be shipped to the Transportation Laboratory for quality assurance testing. The 4 sets shall be securely bundled together and identified by location and contract number with weatherproof markings before shipment. Bundles containing fewer than 4 sets will not be tested.
- Quality assurance testing will be performed in conformance with the requirements for ultimate production sample splices in Section 52-1.08C(3)(a), "Production Test Requirements for Ultimate Butt Splices."

52-1.08C(3)(c) Nondestructive Splice Tests

- When the specifications allow for welded sample splices to be taken from other than the completed lot of splices, the Contractor shall meet the following additional requirements.
- Except for resistance butt welded splices, radiographic examinations shall be performed on 25 percent of all complete joint penetration butt welded splices from a production lot. The size of a production lot will be a maximum of 150 splices. The Engineer will select the splices which will compose the production lot and also the splices within each production lot to be radiographically examined.
- All required radiographic examinations of complete joint penetration butt welded splices shall be performed by the Contractor in conformance with the requirements in AWS D 1.4 and these specifications.
- Before radiographic examination, welds shall conform to the requirements in Section 4.4, "Quality of Welds," of AWS D 1.4.
- Should more than 12 percent of the splices which have been radiographically examined in any production lot be defective, an additional 25 percent of the splices, selected by the Engineer from the same production lot, shall be radiographically examined. Should more than 12 percent of the cumulative total of splices tested from the same production lot be defective, all remaining splices in the lot shall be radiographically examined.
- Additional radiographic examinations performed due to the identification of defective splices shall be at the Contractor's expense.
 - All defects shall be repaired in conformance with the requirements in AWS D 1.4.
 - The Contractor shall notify the Engineer in writing 48 hours before performing any radiographic examinations.
 - The radiographic procedure used shall conform to the requirements in AWS D1.1, AWS D1.4, and the following:

Two exposures shall be made for each complete joint penetration butt welded splice. For each of the 2 exposures, the radiation source shall be centered on each bar to be radiographed. The first exposure shall be made with the radiation source placed at zero degrees from the top of the weld and perpendicular to the weld root and identified with a station mark of "0." The second exposure shall be at 90 degrees to the "0" station mark and shall be identified with a station mark of "90." When obstructions prevent a 90 degree placement of the radiation source for the second exposure, and when approved in writing by the Engineer, the source may be rotated, around the centerline of the reinforcing bar, a maximum of 25 degrees.

For field produced complete joint penetration butt welds, no more than one weld shall be radiographed during one exposure. For shop produced complete joint penetration butt welds, if more than one weld is to be radiographed during one exposure, the angle between the root line of each weld and the direction to the radiation source shall be not less than 65 degrees.

Radiographs shall be made by either X-ray or gamma ray. Radiographs made by X-ray or gamma rays shall have densities of not less than 2.3 nor more than 3.5 in the area of interest. A tolerance of 0.05 in density is allowed for densitometer variations. Gamma rays shall be from the iridium 192 isotope and the emitting specimen shall not exceed 4.45 mm in the greatest diagonal dimension.

The radiographic film shall be placed perpendicular to the radiation source at all times; parallel to the root line of the weld unless source placement determines that the film must be turned; and as close to the root of the weld as possible.

The minimum source to film distance shall be maintained so as to ensure that all radiographs maintain a maximum geometric unsharpness of 0.020 at all times, regardless of the size of the reinforcing bars.

Penetrameters shall be placed on the source side of the bar and perpendicular to the radiation source at all times. One penetrameter shall be placed in the center of each bar to be radiographed, perpendicular to the weld root, and adjacent to the weld. Penetrameter images shall not appear in the weld area.

When radiography of more than one weld is being performed per exposure, each exposure shall have a minimum of one penetrameter per bar, or 3 penetrameters per exposure. When 3 penetrameters per exposure are used, one penetrameter shall be placed on each of the 2 outermost bars of the exposure, and the remaining penetrameter shall be placed on a centrally located bar.

An allowable weld buildup of 4 mm may be added to the total material thickness when determining the proper penetrameter selection. No image quality indicator equivalency will be accepted. Wire penetrameters or penetrameter blocks shall not be used.

Penetrameters shall be sufficiently shimmed using a radiographically identical material. Penetrameter image densities shall be a minimum of 2.0 and a maximum of 3.6.

Radiographic film shall be Class 1, regardless of the size of reinforcing bars.

Radiographs shall be free of film artifacts and processing defects, including, but not limited to, streaks, scratches, pressure marks or marks made for the purpose of identifying film or welding indications.

Each splice shall be clearly identified on each radiograph and the radiograph identification and marking system shall be established between the Contractor and the Engineer before radiographic inspection begins. Film shall be identified by lead numbers only; etching, flashing or writing in identifications of any type will not be permitted. Each piece of film identification information shall be legible and shall include, as a minimum, the following information: Contractor's name, date, name of nondestructive testing firm, initials of radiographer, contract number, part number and weld number. The letter "R" and repair number shall be placed directly after the weld number to designate a radiograph of a repaired weld

Radiographic film shall be developed within a time range of one minute less to one minute more than the film manufacturer's recommended maximum development time. Sight development will not be allowed.

Processing chemistry shall be done with a consistent mixture and quality, and processing rinses and tanks shall be clean to ensure proper results. Records of all developing processes and any chemical changes to the developing processes shall be kept and furnished to the Engineer upon request. The Engineer may request, at any time, that a sheet of unexposed film be processed in the presence of the Engineer to verify processing chemical and rinse quality.

The results of all radiographic interpretations shall be recorded on a signed certification and a copy kept with the film packet.

Technique sheets prepared in conformance with the requirements in ASME Boiler and Pressure Vessels Code, Section V, Article 2 Section T-291 shall also contain the developer temperature, developing time, fixing duration and all rinse times.

52-1.08D Reporting Test Results

- A Production Test Report for all testing performed on each lot shall be prepared by the independent testing laboratory performing the testing and submitted to the QCM for review and approval. The report shall be signed by an engineer who represents the laboratory and is registered as a Civil Engineer in the State of California. The report shall include, as a minimum, the following information for each test: contract number, bridge number, lot number and location, bar size, type of splice, length of mechanical splice, length of test specimen, physical condition of test sample splice and any associated control bar, any notable defects, total measured slip, ultimate tensile strength of each splice, and for ultimate butt splices, limits of affected zone, location of visible necking area, ultimate tensile strength and 95 percent of this ultimate tensile strength for each control bar, and a comparison between 95 percent of the ultimate tensile strength of each control bar and the ultimate tensile strength of its associated splice.
- The QCM must review, approve, and forward each Production Test Report to the Engineer for review before the splices represented by the report are encased in concrete. The Engineer will have 3 working days to review each Production Test Report and respond in writing after a complete report has been received. Should the Contractor elect to encase any splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase splices pending notification by the Engineer, and in the event the Engineer fails to complete the review and provide notification within the time allowed, and if, in the opinion of the Engineer, the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."
- Quality assurance test results for each bundle of 4 sets or 4 samples of splices will be reported in writing to the Contractor within 3 working days after receipt of the bundle by the Transportation Laboratory. In the event that more than one bundle is received on the same day, 2 additional working days shall be allowed for providing test results for each additional bundle received. A test report will be made for each bundle received. Should the Contractor elect to encase splices before receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase

splices pending notification by the Engineer, and in the event the Engineer fails to complete the review within the time allowed, and in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays."

SECTION 55: STEEL STRUCTURES

Issue Date: December 31, 2001

Section 55-3.14, "Bolted Connections," of the Standard Specifications is amended by adding the following after the ninth paragraph:

• If a torque multiplier is used in conjunction with a calibrated wrench as a method for tightening fastener assemblies to the required tension, both the multiplier and the wrench shall be calibrated together as a system. The same length input and output sockets and extensions that will be used in the work shall also be included in the calibration of the system. The manufacturer's torque multiplication ratio shall be adjusted during calibration of the system, such that when this adjusted ratio is multiplied by the actual input calibrated wrench reading, the product is a calculated output torque that is within 2 percent of the true output torque. When this system is used in the work to perform any installation tension testing, rotational capacity testing, fastener tightening, or tension verification, it shall be used, intact as calibrated.

The sixth paragraph of Section 55-4.02, "Payment," of the Standard Specifications is amended to read:

• If a portion or all of the structural steel is fabricated more than 480 air line kilometers from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing the structural steel from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced \$5000 or by an amount computed at \$0.044 per kilogram of structural steel fabricated, whichever is greater, or in the case of each fabrication site located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced \$8000 or by \$0.079 per kilogram of structural steel fabricated, whichever is greater.

SECTION 56: SIGNS

Issue Date: December 31, 2001

Section 56-1.01, "Description," of the Standard Specifications is amended by deleting the third paragraph.

The sixth through the thirteenth paragraphs in Section 56-1.03, "Fabrication," of the Standard Specifications are amended to read:

- High-strength bolted connections, where shown on the plans, shall conform to the provisions in Section 55-3.14, "Bolted Connections," except that only fastener assemblies consisting of a high-strength bolt, nut, hardened washer, and direct tension indicator shall be used.
- High-strength fastener assemblies, and any other bolts, nuts, and washers attached to sign structures shall be zinc-coated by the mechanical deposition process.
- An alternating snugging and tensioning pattern for anchor bolts and high-strength bolted splices shall be used. Once tensioned, high-strength fastener components and direct tension indicators shall not be reused.
- For bolt diameters less than 10 mm, the diameter of the bolt hole shall be not more than 0.80-mm larger than the nominal bolt diameter. For bolt diameters greater than or equal to 10 mm, the diameter of the bolt hole shall be not more than 1.6 mm larger than the nominal bolt diameter.
 - Sign structures shall be fabricated into the largest practical sections prior to galvanizing.
- Ribbed sheet metal panels for box beam closed truss sign structures shall be fastened to the truss members by cap screws or bolts as shown on the plans, or by 4.76 mm stainless steel blind rivets conforming to Industrial Fasteners Institute, Standard IFI-114, Grade 51. The outside diameter of the large flange rivet head shall be not less than 15.88 mm in diameter. Web splices in ribbed sheet metal panels may be made with similar type blind rivets of a size suitable for the thickness of material being connected.
 - Spalling or chipping of concrete structures shall be repaired by the Contractor at the Contractor's expense.

• Overhead sign supports shall have an aluminum identification plate permanently attached near the base, adjacent to the traffic side on one of the vertical posts, using either stainless steel rivets or stainless steel screws. As a minimum, the information on the plate shall include the name of the manufacturer, the date of manufacture and the contract number.

SECTION 59: PAINTING

Issue Date: December 31, 2001

Section 59-2.01, "General," of the Standard Specifications is amended by adding the following paragraphs after the first paragraph:

- Unless otherwise specified, no painting Contractors or subcontractors will be permitted to commence work without having the following current "SSPC: The Society for Protective Coatings" (formerly the Steel Structures Painting Council) certifications in good standing:
 - A. For cleaning and painting structural steel in the field, certification in conformance with the requirements in Qualification Procedure No. 1, "Standard Procedure For Evaluating Painting Contractors (Field Application to Complex Industrial Structures)" (SSPC-QP 1).
 - B. For removing paint from structural steel, certification in conformance with the requirements in Qualification Procedure No. 2, "Standard Procedure For Evaluating Painting Contractors (Field Removal of Hazardous Coatings from Complex Structures)" (SSPC-QP 2).
 - C. For cleaning and painting structural steel in a permanent painting facility, certification in conformance with the requirements in Qualification Procedure No. 3, "Standard Procedure For Evaluating Qualifications of Shop Painting Applicators" (SSPC-QP 3). The AISC's Sophisticated Paint Endorsement (SPE) quality program will be considered equivalent to SSPC-QP 3.

The third paragraph of Section 59-2.03, "Blast Cleaning," of the Standard Specifications is amended to read:

• Exposed steel or other metal surfaces to be blast cleaned shall be cleaned in conformance with the requirements in Surface Preparation Specification No. 6, "Commercial Blast Cleaning," of the "SSPC: The Society for Protective Coatings." Blast cleaning shall leave all surfaces with a dense, uniform, angular anchor pattern of not less than 35 μ m as measured in conformance with the requirements in ASTM Designation: D 4417.

The first paragraph of Section 59-2.06, "Hand Cleaning," of the Standard Specifications is amended to read:

• Dirt, loose rust and mill scale, or paint which is not firmly bonded to the surfaces shall be removed in conformance with the requirements in Surface Preparation Specification No. 2, "Hand Tool Cleaning," of the "SSPC: The Society for Protective Coatings." Edges of old remaining paint shall be feathered.

The fourth paragraph of Section 59-2.12, "Painting," of the Standard Specifications is amended to read:

• The dry film thickness of the paint will be measured in place with a calibrated Type 2 magnetic film thickness gage in conformance with the requirements of specification SSPC-PA2 of the "SSPC: The Society for Protective Coatings."

SECTION 75: MISCELLANEOUS METAL

Issue Date: December 31, 2001

The table in the tenth paragraph of Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications is amended to read:

MaterialSpecificationSteel bars, plates and shapesASTM Designation: A 36/A 36M or A 575, A 576 (AISI or M Grades 1016 through 1030 except Grade 1017)Steel fastener components for general applications:Bolts and studsASTM Designation: A 307Headed anchor boltsASTM Designation: A 307, Grade B, including S1 supplementary requirementsNonheaded boltsASTM Designation: A 307, Grade C, including S1 supplementary requirements and S1.6 of				
shapes				
except Grade 1017) Steel fastener components for general applications: Bolts and studs ASTM Designation: A 307 Headed anchor bolts ASTM Designation: A 307, Grade B, including S1 supplementary requirements Nonheaded anchor bolts ASTM Designation: A 307, Grade C, including S1 supplementary requirements and S1.6 of				
Steel fastener components for general applications: Bolts and studs				
Bolts and studs ASTM Designation: A 307 Headed anchor bolts ASTM Designation: A 307, Grade B, including S1 supplementary requirements Nonheaded anchor bolts ASTM Designation: A 307, Grade C, including S1 supplementary requirements and S1.6 of				
Headed anchor bolts ASTM Designation: A 307, Grade B, including S1 supplementary requirements Nonheaded anchor bolts ASTM Designation: A 307, Grade C, including S1 supplementary requirements and S1.6 of				
S1 supplementary requirements Nonheaded anchor ASTM Designation: A 307, Grade C, including bolts S1 supplementary requirements and S1.6 of				
Nonheaded anchor ASTM Designation: A 307, Grade C, including bolts S1 supplementary requirements and S1.6 of				
bolts S1 supplementary requirements and S1.6 of				
AASHTO Designation: M 314 supplementary				
requirements				
or AASHTO Designation: M 314, Grade 36 or				
55, including S1 supplementary requirements				
High-strength bolts ASTM Designation: A 449, Type 1				
and studs, threaded				
rods, and nonheaded				
anchor bolts				
Nuts ASTM Designation: A 563, including				
Appendix X1*				
Washers ASTM Designation: F 844				
Components of high-strength steel fastener assemblies for use in structural				
steel joints:				
Bolts ASTM Designation: A 325, Type 1				
Tension control bolts ASTM Designation: F 1852, Type 1				
Nuts ASTM Designation: A 563, including				
Appendix X1*				
Hardened washers ASTM Designation: F 436, Type 1, Circular,				
including S1 supplementary requirements				
Direct tension ASTM Designation: F 959, Type 325,				
indicators zinc-coated				
Stainless steel fasteners (Alloys 304 & 316) for general applications:				
Bolts, screws, studs, ASTM Designation: F 593 or F 738M				
threaded rods, and				
nonheaded anchor				
bolts				
Nuts ASTM Designation: F 594 or F 836M				
Washers ASTM Designation: A 240/A 240M and				
ANSI B 18.22M				
Carbon-steel castings ASTM Designation: A 27/A 27M, Grade 65-35				
[450-240], Class 1				
Malleable iron castings ASTM Designation: A 47, Grade 32510 or				
A 47M, Grade 22010				
Gray iron castings ASTM Designation: A 48, Class 30B				
Ductile iron castings ASTM Designation: A 536, Grade 65-45-12				
Cast iron pipe Commercial quality				
Steel pipe Commercial quality, welded or extruded				
Other parts for general Commercial quality				
* Zinc-coated nuts that will be tightened beyond snug or wrench tight shall				

^{*} Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dyed dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563.

The table in the eighteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read:

	Sustained Tension		
Stud Diameter	Test Load		
(millimeters)	(kilonewtons)		
29.01-33.00	137.9		
23.01-29.00	79.6		
21.01-23.00	64.1		
* 18.01-21.00	22.2		
15.01-18.00	18.2		
12.01-15.00	14.2		
9.01-12.00	9.34		
6.00-9.00	4.23		

^{*} Maximum stud diameter permitted for mechanical expansion anchors.

The table in the nineteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read:

	Ultimate		
Stud Diameter	Tensile Load		
(millimeters)	(kilonewtons)		
30.01-33.00	112.1		
27.01-30.00	88.1		
23.01-27.00	71.2		
20.01-23.00	51.6		
16.01-20.00	32.0		
14.01-16.00	29.4		
12.00-14.00	18.7		

The table in the twenty-second paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read:

Installation Torque Values, (newton meters)

	Shell Type	Integral Stud Type	Resin Capsule
	Mechanical	Mechanical	Anchors
Stud Diameter	Expansion	Expansion	and
(millimeters)	Anchors	Anchors	Cast-in-Place Inserts
29.01-33.00	_	_	540
23.01-29.00	_	_	315
21.01-23.00	_	_	235
18.01-21.00	110	235	200
15.01-18.00	45	120	100
12.01-15.00	30	65	40
9.01-12.00	15	35	24
6.00-9.00	5	10	_

SECTION 83: RAILINGS AND BARRIERS

Issue Date: June 13, 2002

The ninth paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read:

• The grades and species of wood posts and blocks shall be No. 1 timbers (also known as No. 1 structural) Douglas fir or No. 1 timbers Southern yellow pine. Wood posts and blocks shall be graded in conformance with the provisions in Section 57-2, "Structural Timber," of the Standard Specifications, except allowances for shrinkage after mill cutting shall in no case exceed 5 percent of the American Lumber Standards minimum sizes, at the time of installation.

The eleventh paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read:

• Wood posts and blocks shall be pressure treated after fabrication in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications with creosote, creosote coal tar solution, creosote petroleum solution (50-50), pentachlorophenol in hydrocarbon solvent, copper naphthenate, ammoniacal copper arsenate, or ammoniacal copper zinc arsenate. In addition to the preservatives listed above, Southern yellow pine may also be pressure treated with chromated copper arsenate. When other than one of the creosote processes is used, blocks shall have a minimum retention of 6.4 Kg/m³, and need not be incised.

SECTION 85: PAVEMENT MARKERS

Issue Date: May 16, 2003

The second through fifth paragraphs in Section 85-1.03, "Sampling, Tolerances and Packaging," of the Standard Specifications are amended to read:

Sampling

- Twenty markers selected at random will constitute a representative sample for each lot of markers.
- The lot size shall not exceed 25000 markers.

Tolerances

- Three test specimens will be randomly selected from the sample for each test and tested in conformance with these specifications. Should any one of the 3 specimens fail to conform with the requirements in these specifications, 6 additional specimens will be tested. The failure of any one of these 6 specimens shall be cause for rejection of the entire lot or shipment represented by the sample.
- The entire sample of retroreflective pavement markers will be tested for reflectance. The failure of 10 percent or more of the original sampling shall be cause for rejection.

Section 85-1.04, "Non-Reflective Pavement Markers," of the Standard Specifications is amended to read:

85-1.04 Non-Reflective Pavement Markers

- Non-reflective pavement markers (Types A and AY) shall be, at the option of the Contractor, either ceramic or plastic conforming to these specifications.
- The top surface of the marker shall be convex with a gradual change in curvature. The top, bottom and sides shall be free of objectionable marks or discoloration that will affect adhesion or appearance.
- The bottom of markers shall have areas of integrally formed protrusions or indentations, which will increase the effective bonding surface area of adhesive. The bottom surface of the marker shall not deviate more than 1.5 mm from a flat surface. The areas of protrusion shall have faces parallel to the bottom of the marker and shall project approximately one mm from the bottom.

The second through fourth paragraphs of Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," of the Standard Specifications are deleted.

The table in the fifth paragraph in Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," of the Standard Specifications is amended to read:

Testing

• Tests shall be performed in conformance with the requirements in California Test 669.

Test	Test Description	Requirement
a	Bond strength	4.8 MPa, min.
b	Glaze thickness	180 μm, min.
c	Hardness	6 Moh, min.
d	Luminance factor, Type A, white markers only,	75, min.
	glazed surface	
e	Yellowness index, Type A, white markers only,	7, max.
	glazed surface	
f	Color-yellow, Type AY, yellow markers only.	Pass
	The chromaticity coordinates shall be within a	
	color box defined in CTM 669	
g	Compressive strength	6700 N, min.
h	Water absorption	2.0 %, max.
i	Artificial weathering, 500 hours exposure,	20, max.
	yellowness index	

Section 85-1.04B, "Non-Reflective Pavement Markers (Plastic)," of the Standard Specifications is amended to read:

85-1.04B Non-Reflective Pavement Markers (Plastic)

- Plastic non-reflective pavement markers Types A and AY shall be, at the option of the Contractor, either polypropylene or acrylonitrile-butadiene-styrene (ABS) plastic type.
- Plastic markers shall conform to the testing requirements specified in Section 85-1.04A, "Non-Reflective Pavement Markers (Ceramic)," except that Tests a, b, c, and h shall not apply. The plastic markers shall not be coated with substances that interfere with the ability of the adhesive bonding to the marker.

The sixth and seventh paragraphs in Section 85-1.05, "Retroreflective Pavement Markers," of the Standard Specifications are amended to read:

Testing

Tests shall be performed in conformance with the requirements in California Test 669.

Test Description	Requirement			
Bond strength ^a	3.	4 MPa, mi	n.	
Compressive strength ^b	8	900 N, mii	1.	
Abrasion resistance, marker must meet the respective specific intensity minimum requirements after abrasion.	Pass			
Water Soak Resistance	No delamination of the body or lens system of the marker nor loss of reflectance			
	Specific Intensity			
Reflectance	Clear	Yellow	Red	
0° Incidence Angle, min.	3.0	1.5	0.75	
20° Incidence Angle, min.	1.2	0.60	0.30	
After one year field evaluation	0.30	0.15	0.08	

- a Failure of the marker body or filler material prior to reaching 3.4 MPa shall constitute a failing bond strength test.
- b Deformation of the marker of more than 3 mm at a load of less than 8900 N or delamination of the shell and the filler material of more than 3 mm regardless of the load required to break the marker shall be cause for rejection of the markers as specified in Section 85-1.03, "Sampling, Tolerances and Packaging."
- Pavement markers to be placed in pavement recesses shall conform to the above requirements for retroreflective pavement markers except that the minimum compressive strength requirement shall be 5338 N.

The eighth paragraph of Section 85-1.05, "Retroreflective Pavement Markers" of the Standard Specifications is deleted.

The eighth paragraph in Section 85-1.06, "Replacement," of the Standard Specifications is amended to read:

• Epoxy adhesive shall not be used to apply non-reflective plastic pavement markers.

SECTION 86: SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS

Issue Date: June 19, 2003

The seventh paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read:

• Forms shall be true to line and grade. Tops of foundations for posts and standards, except special foundations, shall be finished to curb or sidewalk grade or as directed by the Engineer. Forms shall be rigid and securely braced in place. Conduit ends and anchor bolts shall be placed in proper position and to proper height, and anchor bolts shall be held in place by means of rigid top and bottom templates. The bottom template shall be made of steel. The bottom template shall provide proper spacing and alignment of the anchor bolts near their bottom embedded end. The bottom template shall be installed before placing footing concrete. Anchor bolts shall not be installed more than 1:40 from vertical.

Section 86-2.03, "Foundations," of the Standard Specifications is amended by deleting the eighth paragraph.

The twelfth paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read:

• Plumbing of the standards shall be accomplished by adjusting the leveling nuts before placing the mortar or before the foundation is finished to final grade. Shims, or other similar devices shall not be used for plumbing or raking of posts, standards or pedestals. After final adjustments of both top nuts and leveling nuts on anchorage assemblies have been made, firm contact shall exist between all bearing surfaces of the anchor bolt nuts, washers, and the base plate.

The first paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read:

• Standards for traffic signals and lighting, and steel pedestals for cabinets and other similar equipment, shall be located as shown on the plans. Bolts, nuts and washers, and anchor bolts for use in signal and lighting support structures shall conform to the provisions in Section 55-2, "Materials." Except when bearing-type connections or slipbases are specified, high-strength bolted connections shall conform to the provisions in Section 55-3.14, "Bolted Connections." Welding, nondestructive testing (NDT) of welds, and acceptance and repair criteria for NDT of steel members shall conform to the requirements of AWS D1.1 and the contract special provisions.

The second paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications is amended to read:

• On each lighting standard except Type 1, one rectangular corrosion resistant metal identification tag shall be permanently attached above the hand hole, near the base of the standard, using stainless steel rivets. On each signal pole support, two corrosion resistant metal identification tags shall be attached, one above the hand hole near the base of the vertical standard and one on the underside of the signal mast arm near the arm plate. As a minimum, the information on each identification tag shall include the name of the manufacturer, the date of manufacture, the identification number as shown on the plans, the contract number, and a unique identification code assigned by the fabricator. This number shall be traceable to a particular contract and the welds on that component, and shall be readable after the support structure is coated and installed. The lettering shall be a minimum of 7 mm high. The information may be either depressed or raised, and shall be legible.

The fourth paragraph of Section 86-2.04, "Standards, Steel Pedestals and Posts" of the Standard Specifications is amended to read:

• Ferrous metal parts of standards, with shaft length of 4.6 m and longer, shall conform to the details shown on the plans, the provisions in Section 55, "Steel Structures," except as otherwise noted, and the following requirements:

Except as otherwise specified, standards shall be fabricated from sheet steel of weldable grade having a minimum vield strength, after fabrication, of 276 MPa.

Certified test reports which verify conformance to the minimum yield strength requirements shall be submitted to the Engineer. The test reports may be the mill test reports for the as-received steel or, when the as-received steel has a lower yield strength than required, the Contractor shall provide supportive test data which provides assurance that the Contractor's method of cold forming will consistently increase the tensile properties of the steel to meet the specified minimum yield strength. The supportive test data shall include tensile properties of the steel after cold forming for specific heats and thicknesses.

When a single-ply 8-mm thick pole is specified, a 2-ply pole with equivalent section modulus may be substituted.

Standards may be fabricated of full-length sheets or shorter sections. Each section shall be fabricated from not more than 2 pieces of sheet steel. Where 2 pieces are used, the longitudinal welded seams shall be directly opposite one another. When the sections are butt-welded together, the longitudinal welded seams on adjacent sections shall be placed to form continuous straight seams from base to top of standard.

Butt-welded circumferential joints of tubular sections requiring CJP groove welds shall be made using a metal sleeve backing ring inside each joint. The sleeve shall be 3-mm nominal thickness, or thicker, and manufactured from steel having the same chemical composition as the steel in the tubular sections to be joined. When the sections to be joined have different specified minimum yield strengths, the steel in the sleeve shall have the same chemical composition as the tubular section having the higher minimum yield strength. The width of the metal sleeve shall be consistent with the type of NDT chosen and shall be a minimum width of 25 mm. The sleeve shall be centered at the joint and be in contact with the tubular section at the point of the weld at time of fit-up.

Welds shall be continuous.

The weld metal at the transverse joint shall extend to the sleeve, making the sleeve an integral part of the joint.

During fabrication, longitudinal seams on vertical tubular members of cantilevered support structures shall be centered on and along the side of the pole that the pole plate is located. Longitudinal seams on horizontal tubular members, including signal and luminaire arms, shall be within +/-45 degrees of the bottom of the arm.

The longitudinal welds in steel tubular sections may be made by the electric resistance welding process.

Longitudinal seam welds shall have 60 percent minimum penetration, except that within 150 mm of circumferential welds, longitudinal seam welds shall be CJP groove welds. In addition, longitudinal seam welds on lighting support structures having telescopic pole segment splices shall be CJP groove welds on the female end for a length on each end equal to the designated slip fit splice length plus 150 mm.

Exposed circumferential welds, except fillet and fatigue-resistant welds, shall be ground flush (-0, +2mm) with the base metal prior to galvanizing or painting.

Circumferential welds and base plate-to-pole welds may be repaired only one time without written permission from the Engineer.

Exposed edges of the plates that make up the base assembly shall be finished smooth and exposed corners of the plates shall be broken unless otherwise shown on the plans. Shafts shall be provided with slip-fitter shaft caps.

Flatness of surfaces of 1) base plates that are to come in contact with concrete, grout, or washers and leveling nuts 2) plates in high-strength bolted connections, 3) plates in joints where cap screws are used to secure luminaire and signal arms, and 4) plates used for breakaway slip base assemblies shall conform to the requirements of ASTM A6.

Standards shall be straight, with a permissive variation not to exceed 25 mm measured at the midpoint of a 9-m or 11-m standard and not to exceed 20 mm measured at the midpoint of a 5-m through 6-m standard. Variation shall not exceed 25 mm at a point 4.5 m above the base plate for Type 35 and Type 36 standards.

Zinc-coated nuts used on fastener assemblies having a specified preload (obtained by specifying a prescribed tension, torque value, or degree of turn) shall be provided with a colored lubricant that is clean and dry to the touch. The color of the lubricant shall be in contrast to the zinc coating on the nut so that the presence of the lubricant is visually obvious. In addition, either the lubricant shall be insoluble in water, or fastener components shall be shipped to the job site in a sealed container.

No holes shall be made in structural members unless the holes are shown on the plans or are approved in writing by the Engineer.

Standards with an outside diameter of 300 mm or less shall be round. Standards with an outside diameter greater than 300 mm shall be round or multisided. Multisided standards shall have a minimum of 12 sides which shall be convex and shall have a minimum bend radius of 100 mm.

Mast arms for standards shall be fabricated from material as specified for standards, and shall conform to the dimensions shown on the plans.

The cast steel option for slip bases shall be fabricated from material conforming to the requirements in ASTM Designation: A 27/A 27M, Grade 70-40. Other comparable material may be used if written permission is given by the Engineer. The casting tolerances shall be in conformance with the Steel Founder's Society of America recommendations (green sand molding).

One casting from each lot of 50 castings or less shall be subject to radiographic inspection, in conformance with the requirements in ASTM Designation: E 94. The castings shall comply with the acceptance criteria severity level 3 or better for the types and categories of discontinuities in conformance with the requirements in ASTM Designations: E 186 and E 446. If the one casting fails to pass the inspection, 2 additional castings shall be radiographed. Both of these castings shall pass the inspection or the entire lot of 50 will be rejected.

Material certifications, consisting of physical and chemical properties, and radiographic films of the castings shall be filed at the manufacturer's office. These certifications and films shall be available for inspection upon request.

High-strength bolts, nuts and flat washers used to connect slip base plates shall conform to the requirements in ASTM Designation: A 325 or A 325M and shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing."

Plate washers shall be fabricated by saw cutting and drilling steel plate conforming to the requirements in AISI Designation: 1018, and be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." Prior to galvanizing, burrs and sharp edges shall be removed and holes shall be chamfered sufficiently on each side to allow the bolt head to make full contact with the washer without tension on the bolt.

High-strength cap screws shown on the plans for attaching arms to standards shall conform to the requirements in ASTM Designation: A 325, A 325M or ASTM Designation: A 449, and shall comply with the mechanical requirements in ASTM Designation: A 325 or A 325M after galvanizing. The cap screws shall be galvanized in conformance with the provisions in Section 75-1.05, "Galvanizing." The threads of the cap screws shall be coated with a colored lubricant that is clean and dry to the touch. The color of the lubricant shall be in contrast to the color of the zinc coating on the cap screw so that presence of the lubricant is visually obvious. In addition, either the lubricant shall be insoluble in water, or fastener components shall be shipped to the job site in a sealed container.

Unless otherwise specified, bolted connections attaching signal or luminaire arms to poles shall be considered slip critical. Galvanized faying surfaces on plates on luminaire and signal arms and matching plate surfaces on poles shall be roughened by hand using a wire brush prior to assembly and shall conform to the requirements for Class C surface conditions for slip-critical connections in "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts," a specification approved by the Research Council on Structural Connections (RCSC) of the Engineering Foundation. For faying surfaces required to be painted, the paint shall be an approved type, brand, and thickness that has been tested and approved according to the RCSC Specification as a Class B coating.

Samples of fastener components will be randomly taken from each production lot by the Engineer and submitted, along with test reports required by appropriate ASTM fastener specifications, for QA testing and evaluation. Sample sizes for each fastener component shall be as determined by the Engineer.

The seventh paragraph of 86-2.04, "Standards, Steel Pedestals and Posts" of the Standard Specifications is amended to read:

• To avoid interference of arm plate-to-tube welds with cap screw heads, and to ensure cap screw heads can be turned using conventional installation tools, fabricators shall make necessary adjustments to details prior to fabrication and properly locate the position of arm tubes on arm plates during fabrication.

Section 86-8.01, "Payment," of the Standard Specifications is amended by adding the following paragraph after the first paragraph:

• If a portion or all of the poles for signal, lighting and electrical systems pursuant to Standard Specification Section 86, "Signals, Lighting and Electrical Systems," is fabricated more than 480 air line kilometers from both-Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in such expenses, it is agreed that payment to the Contractor for furnishing such items from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced \$5000; in addition, in the case where a fabrication site is located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced an additional \$3000 per each fabrication site (\$8000 total per site).

SECTION 88: ENGINEERING FABRIC

Issue Date: January 15, 2002

Section 88-1.02, "Pavement Reinforcing Fabric," of the Standard Specifications is amended to read:

• Pavement reinforcing fabric shall be 100 percent polypropylene staple fiber fabric material, needle-punched, thermally bonded on one side, and conform to the following:

Specification	Requirement
Weight, grams per square meter	
ASTM Designation: D 5261	140
Grab tensile strength	
(25-mm grip), kilonewtons, min. in each direction	
ASTM Designation: D 4632	0.45
Elongation at break, percent min.	
ASTM Designation: D 4632	50
Asphalt retention by fabric, grams per square meter. (Residual Minimum)	
ASTM Designation: D 6140	900

Note: Weight, grab, elongation and asphalt retention are based on Minimum Average Roll Value (MARV)

SECTION 90: PORTLAND CEMENT CONCRETE

Issue Date: June 19, 2003

Section 90, "Portland Cement Concrete," of the Standard Specifications is amended to read:

SECTION 90: PORTLAND CEMENT CONCRETE 90-1 GENERAL

90-1.01 DESCRIPTION

- Portland cement concrete shall be composed of cementitious material, fine aggregate, coarse aggregate, admixtures if used, and water, proportioned and mixed as specified in these specifications.
- The Contractor shall determine the mix proportions for concrete in conformance with these specifications. Unless otherwise specified, cementitious material shall be a combination of cement and mineral admixture. Cementitious material shall be either:
 - 1. "Type IP (MS) Modified" cement; or
 - 2. A combination of "Type II Modified" portland cement and mineral admixture; or
 - 3. A combination of Type V portland cement and mineral admixture.
- Type III portland cement shall be used only as allowed in the special provisions or with the approval of the Engineer.
 - Class 1 concrete shall contain not less than 400 kg of cementitious material per cubic meter.
 - Class 2 concrete shall contain not less than 350 kg of cementitious material per cubic meter.
 - Class 3 concrete shall contain not less than 300 kg of cementitious material per cubic meter.
 - Class 4 concrete shall contain not less than 250 kg of cementitious material per cubic meter.
- Minor concrete shall contain not less than 325 kg of cementitious material per cubic meter unless otherwise specified in these specifications or the special provisions.
- Unless otherwise designated on the plans or specified in these specifications or the special provisions, the amount of cementitious material used per cubic meter of concrete in structures or portions of structures shall conform to the following:

Use	Cementitious Material Content (kg/m3)
Concrete designated by compressive strength:	
Deck slabs and slab spans of bridges	400 min., 475 max.
Roof sections of exposed top box culverts	400 min., 475 max.
Other portions of structures	350 min., 475 max.
Concrete not designated by compressive strength:	
Deck slabs and slab spans of bridges	400 min.
Roof sections of exposed top box culverts	400 min.
Prestressed members	400 min.
Seal courses	400 min.
Other portions of structures	350 min.
Concrete for precast members	350 min., 550 max.

- Whenever the 28-day compressive strength shown on the plans is greater than 25 MPa, the concrete shall be designated by compressive strength. If the plans show a 28-day compressive strength that is 28 MPa or greater, an additional 14 days will be allowed to obtain the specified strength. The 28-day compressive strengths shown on the plans that are 25 MPa or less are shown for design information only and are not a requirement for acceptance of the concrete.
- Concrete designated by compressive strength shall be proportioned such that the concrete will attain the strength shown on the plans or specified in the special provisions.
- Before using concrete for which the mix proportions have been determined by the Contractor, or in advance of revising those mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design.
- Compliance with cementitious material content requirements will be verified in conformance with procedures described in California Test 518 for cement content. For testing purposes, mineral admixture shall be considered to be cement. Batch proportions shall be adjusted as necessary to produce concrete having the specified cementitious material content.
- If any concrete has a cementitious material, portland cement, or mineral admixture content that is less than the minimum required, the concrete shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place and the Contractor shall pay to the State \$0.55 for each kilogram of cementitious material, portland cement, or mineral admixture that is less than the minimum required. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. The deductions will not be made unless the difference between the contents required and those actually provided exceeds the batching tolerances permitted by Section 90-5, "Proportioning." No deductions will be made based on the results of California Test 518.
 - The requirements of the preceding paragraph shall not apply to minor concrete or commercial quality concrete.

90-2 MATERIALS

90-2.01 CEMENT

- Unless otherwise specified, cement shall be either "Type IP (MS) Modified" cement, "Type II Modified" portland cement or Type V portland cement.
- "Type IP (MS) Modified" cement shall conform to the requirements for Type IP (MS) cement in ASTM Designation: C 595, and shall be comprised of an intimate and uniform blend of Type II cement and not more than 35 percent by mass of mineral admixture. The type and minimum amount of mineral admixture used in the manufacture of "Type IP (MS) Modified" cement shall be in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures."
- "Type II Modified" portland cement shall conform to the requirements for Type II portland cement in ASTM Designation: C 150.
- In addition, "Type IP (MS) Modified" cement and "Type II Modified" portland cement shall conform to the following requirements:
 - A. The cement shall not contain more than 0.60-percent by mass of alkalies, calculated as the percentage of Na₂O plus 0.658 times the percentage of K₂O, when determined by either direct intensity flame photometry or by the atomic absorption method. The instrument and procedure used shall be qualified as to precision and accuracy in conformance with the requirements in ASTM Designation: C 114;
 - B. The autoclave expansion shall not exceed 0.50-percent; and
 - C. Mortar, containing the cement to be used and Ottawa sand, when tested in conformance with California Test 527, shall not expand in water more than 0.010 percent and shall not contract in air more than 0.048 percent, except that

when cement is to be used for precast prestressed concrete piling, precast prestressed concrete members, or steam cured concrete products, the mortar shall not contract in air more than 0.053 percent.

- Type III and Type V portland cements shall conform to the requirements in ASTM Designation: C 150 and the additional requirements listed above for "Type II Modified" portland cement, except that when tested in conformance with California Test 527, mortar containing Type III portland cement shall not contract in air more than 0.075 percent.
- Cement used in the manufacture of cast-in-place concrete for exposed surfaces of like elements of a structure shall be from the same cement mill.
- Cement shall be protected from exposure to moisture until used. Sacked cement shall be piled to permit access for tally, inspection, and identification of each shipment.
- Adequate facilities shall be provided to assure that cement meeting the provisions specified in this Section 90-2.01 shall be kept separate from other cement in order to prevent any but the specified cement from entering the work. Safe and suitable facilities for sampling cement shall be provided at the weigh hopper or in the feed line immediately in advance of the hopper, in conformance with California Test 125.
- If cement is used prior to sampling and testing as provided in Section 6-1.07, "Certificates of Compliance," and the cement is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the cement manufacturer or supplier of the cement. If the cement is used in ready-mixed concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product.
- Cement furnished without a Certificate of Compliance shall not be used in the work until the Engineer has had sufficient time to make appropriate tests and has approved the cement for use.

90-2.02 AGGREGATES

- Aggregates shall be free from deleterious coatings, clay balls, roots, bark, sticks, rags, and other extraneous material.
- Natural aggregates shall be thoroughly and uniformly washed before use.
- The Contractor, at the Contractor's expense, shall provide safe and suitable facilities, including necessary splitting devices for obtaining samples of aggregates, in conformance with California Test 125.
- Aggregates shall be of such character that it will be possible to produce workable concrete within the limits of water content provided in Section 90-6.06, "Amount of Water and Penetration."
- Aggregates shall have not more than 10 percent loss when tested for soundness in conformance with the requirements in California Test 214. The soundness requirement for fine aggregate will be waived, provided that the durability index, D_f , of the fine aggregate is 60, or greater, when tested for durability in conformance with California Test 229.
- If the results of any one or more of the Cleanness Value, Sand Equivalent, or aggregate grading tests do not meet the requirements specified for "Operating Range" but all meet the "Contract Compliance" requirements, the placement of concrete shall be suspended at the completion of the current pour until tests or other information indicate that the next material to be used in the work will comply with the requirements specified for "Operating Range."
- If the results of either or both the Cleanness Value and coarse aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete that is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$4.60 per cubic meter for paving concrete and \$7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.
- If the results of either or both the Sand Equivalent and fine aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete which is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$4.60 per cubic meter for paving concrete and \$7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract.
- The 2 preceding paragraphs apply individually to the "Contract Compliance" requirements for coarse aggregate and fine aggregate. When both coarse aggregate and fine aggregate do not conform to the "Contract Compliance" requirements, both paragraphs shall apply. The payments specified in those paragraphs shall be in addition to any payments made in conformance with the provisions in Section 90-1.01, "Description."
- No single Cleanness Value, Sand Equivalent or aggregate grading test shall represent more than 250 m³ of concrete or one day's pour, whichever is smaller.
- When the source of an aggregate is changed, the Contractor shall adjust the mix proportions and submit in writing to the Engineer a copy of the mix design before using the aggregates.

90-2.02A Coarse Aggregate

- Coarse aggregate shall consist of gravel, crushed gravel, crushed rock, crushed air-cooled iron blast furnace slag or combinations thereof. Crushed air-cooled blast furnace slag shall not be used in reinforced or prestressed concrete.
 - Coarse aggregate shall conform to the following quality requirements:

Tests	California Test	Requirements
Loss in Los Angeles Rattler (after 500 revolutions)	211	45% max.
Cleanness Value Operating Range	227	75 min.
Contract Compliance	227	71 min.

- In lieu of the above Cleanness Value requirements, a Cleanness Value "Operating Range" limit of 71, minimum, and a Cleanness Value "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the coarse aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:
 - 1. coarse aggregate sampled at the completion of processing at the aggregate production plant had a Cleanness Value of not less than 82 when tested by California Test 227; and
 - 2. prequalification tests performed in conformance with the requirements in California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.02B Fine Aggregate

- Fine aggregate shall consist of natural sand, manufactured sand produced from larger aggregate or a combination thereof. Manufactured sand shall be well graded.
 - Fine aggregate shall conform to the following quality requirements:

	California	
Test	Test	Requirements
Organic Impurities	213	Satisfactory ^a
Mortar Strengths Relative to Ottawa Sand	515	95%, min.
Sand Equivalent:		
Operating Range	217	75, min.
Contract Compliance	217	71, min.

- a Fine aggregate developing a color darker than the reference standard color solution may be accepted if it is determined by the Engineer, from mortar strength tests, that a darker color is acceptable.
- In lieu of the above Sand Equivalent requirements, a Sand Equivalent "Operating Range" limit of 71 minimum and a Sand Equivalent "Contract Compliance" limit of 68 minimum will be used to determine the acceptability of the fine aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that:
 - 1. fine aggregate sampled at the completion of processing at the aggregate production plant had a Sand Equivalent value of not less than 82 when tested by California Test 217; and
 - 2. prequalification tests performed in conformance with California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete.

90-2.03 WATER

• In conventionally reinforced concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 1000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In prestressed concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil

and shall not contain more than 650 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In no case shall the water contain an amount of impurities that will cause either: 1) a change in the setting time of cement of more than 25 percent when tested in conformance with the requirements in ASTM Designation: C 191 or ASTM Designation: C 266 or 2) a reduction in the compressive strength of mortar at 14 days of more than 5 percent, when tested in conformance with the requirements in ASTM Designation: C 109, when compared to the results obtained with distilled water or deionized water, tested in conformance with the requirements in ASTM Designation: C 109.

- In non-reinforced concrete work, the water for curing, for washing aggregates and for mixing shall be free from oil and shall not contain more than 2000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, or more than 1500 parts per million of sulfates as SO₄, when tested in conformance with California Test 417.
- In addition to the above provisions, water for curing concrete shall not contain impurities in a sufficient amount to cause discoloration of the concrete or produce etching of the surface.
- Water reclaimed from mixer wash-out operations may be used in mixing concrete. The water shall not contain coloring agents or more than 300 parts per million of alkalis ($Na_2O + 0.658 K_2O$) as determined on the filtrate. The specific gravity of the water shall not exceed 1.03 and shall not vary more than ± 0.010 during a day's operations.

90-2.04 ADMIXTURE MATERIALS

- Admixture materials shall conform to the requirements in the following ASTM Designations:
- A. Chemical Admixtures—ASTM Designation: C 494.
- B. Air-entraining Admixtures—ASTM Designation: C 260.
- C. Calcium Chloride—ASTM Designation: D 98.
- D. Mineral Admixtures—Coal fly ash; raw or calcined natural pozzolan as specified in ASTM Designation: C 618; silica fume conforming to the requirements in ASTM Designation: C 1240, with reduction of mortar expansion of 80 percent, minimum, using the cement from the proposed mix design.
- Unless otherwise specified in the special provisions, mineral admixtures shall be used in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures."

90-3 AGGREGATE GRADINGS

90-3.01 **GENERAL**

- Before beginning concrete work, the Contractor shall submit in writing to the Engineer the gradation of the primary aggregate nominal sizes that the Contractor proposes to furnish. If a primary coarse aggregate or the fine aggregate is separated into 2 or more sizes, the proposed gradation shall consist of the gradation for each individual size, and the proposed proportions of each individual size, combined mathematically to indicate one proposed gradation. The proposed gradation shall meet the grading requirements shown in the table in this section, and shall show the percentage passing each of the sieve sizes used in determining the end result.
- The Engineer may waive, in writing, the gradation requirements in this Section 90-3.01 and in Sections 90-3.02, "Coarse Aggregate Grading," 90-3.03, "Fine Aggregate Grading," and 90-3.04, "Combined Aggregate Gradings," if, in the Engineer's opinion, furnishing the gradation is not necessary for the type or amount of concrete work to be constructed.
 - Gradations proposed by the Contractor shall be within the following percentage passing limits:

Primary Aggregate Nominal Size	Sieve Size	Limits of Proposed Gradation
37.5-mm x 19-mm	25-mm	19 - 41
25-mm x 4.75-mm	19-mm	52 - 85
25-mm x 4.75-mm	9.5-mm	15 - 38
12.5-mm x 4.75-mm	9.5-mm	40 - 78
9.5-mm x 2.36-mm	9.5-mm	50 - 85
Fine Aggregate	1.18-mm	55 - 75
Fine Aggregate	600-μm	34 - 46
Fine Aggregate	300-μm	16 - 29

• Should the Contractor change the source of supply, the Contractor shall submit in writing to the Engineer the new gradations before their intended use.

90-3.02 COARSE AGGREGATE GRADING

• The grading requirements for coarse aggregates are shown in the following table for each size of coarse aggregate:

		Percentage Passing Primary Aggregate Nominal Sizes						
	37.5-mn	n x 19-mm	25-mm	25-mm x 4.75-mm 12.5-mm x 4.75-mm		9.5-mm	9.5-mm x 2.36-mm	
	Operating	Contract	Operating	Contract	Operating	Contract	Operating	Contract
Sieve Sizes	Range	Compliance	Range	Compliance	Range	Compliance	Range	Compliance
50-mm	100	100	—	_	_			
37.5-mm	88-100	85-100	100	100				
25-mm	$x \pm 18$	$X \pm 25$	88-100	86-100				
19-mm	0-17	0-20	$X \pm 15$	$X \pm 22$	100	100		
12.5-mm	_				82-100	80-100	100	100
9.5-mm	0-7	0-9	$X \pm 15$	$X \pm 22$	$X \pm 15$	$X \pm 22$	$X \pm 15$	$X \pm 20$
4.75-mm			0-16	0-18	0-15	0-18	0-25	0-28
2.36-mm		_	0-6	0-7	0-6	0-7	0-6	0-7

- In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."
- Coarse aggregate for the 37.5-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," shall be furnished in 2 or more primary aggregate nominal sizes. Each primary aggregate nominal size may be separated into 2 sizes and stored separately, provided that the combined material conforms to the grading requirements for that particular primary aggregate nominal size.
- When the 25-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," is to be used, the coarse aggregate may be separated into 2 sizes and stored separately, provided that the combined material shall conform to the grading requirements for the 25-mm x 4.75-mm primary aggregate nominal size.

90-3.03 FINE AGGREGATE GRADING

Fine aggregate shall be graded within the following limits:

	Percentage Passing			
Sieve Sizes	Operating Range	Contract Compliance		
9.5-mm	100	100		
4.75-mm	95-100	93-100		
2.36-mm	65-95	61-99		
1.18-mm	X ± 10	X ± 13		
600-μm	$X \pm 9$	X ± 12		
300-μm	$X \pm 6$	$X \pm 9$		
150-μm	2-12	1-15		
75-μm	0-8	0-10		

- In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General."
- In addition to the above required grading analysis, the distribution of the fine aggregate sizes shall be such that the difference between the total percentage passing the 1.18-mm sieve and the total percentage passing the 600- μ m sieves shall be between 10 and 40, and the difference between the percentage passing the 600- μ m and 300- μ m sieves shall be between 10 and 40.
- Fine aggregate may be separated into 2 or more sizes and stored separately, provided that the combined material conforms to the grading requirements specified in this Section 90-3.03.

90-3.04 COMBINED AGGREGATE GRADINGS

• Combined aggregate grading limits shall be used only for the design of concrete mixes. Concrete mixes shall be designed so that aggregates are combined in proportions that shall produce a mixture within the grading limits for combined aggregates as specified herein. Within these limitations, the relative proportions shall be as ordered by the Engineer, except as otherwise provided in Section 90-1.01, "Description."

• The combined aggregate grading, except when otherwise specified in these specifications or the special provisions, shall be either the 37.5-mm, maximum grading, or the 25-mm, maximum grading, at the option of the Contractor.

Grading Limits of Combined Aggregates

	Percentage Passing			
Sieve Sizes	37.5-mm Max.	25-mm Max.	12.5-mm Max.	9.5-mm Max.
50-mm	100	_	_	_
37.5-mm	90-100	100	_	_
25-mm	50-86	90-100	_	_
19-mm	45-75	55-100	100	_
12.5-mm	_		90-100	100
9.5-mm	38-55	45-75	55-86	50 - 100
4.75-mm	30-45	35-60	45-63	45 - 63
2.36-mm	23-38	27-45	35-49	35 - 49
1.18-mm	17-33	20-35	25-37	25 - 37
600-μm	10-22	12-25	15-25	15 - 25
300-μm	4-10	5-15	5-15	5 - 15
150-μm	1-6	1-8	1-8	1 - 8
75-μm	0-3	0-4	0-4	0 - 4

• Changes from one grading to another shall not be made during the progress of the work unless permitted by the Engineer.

90-4 ADMIXTURES

90-4.01 GENERAL

- Admixtures used in portland cement concrete shall conform to and be used in conformance with the provisions in this Section 90-4 and the special provisions. Admixtures shall be used when specified or ordered by the Engineer and may be used at the Contractor's option as provided herein.
- Chemical admixtures and air-entraining admixtures containing chlorides as Cl in excess of one percent by mass of admixture, as determined by California Test 415, shall not be used in prestressed or reinforced concrete.
 - Calcium chloride shall not be used in concrete except when otherwise specified.
- Mineral admixture used in concrete for exposed surfaces of like elements of a structure shall be from the same source and of the same percentage.
- Admixtures shall be uniform in properties throughout their use in the work. Should it be found that an admixture as furnished is not uniform in properties, its use shall be discontinued.
- If more than one admixture is used, the admixtures shall be compatible with each other so that the desirable effects of all admixtures used will be realized.

90-4.02 MATERIALS

Admixture materials shall conform to the provisions in Section 90–2.04, "Admixture Materials."

90-4.03 ADMIXTURE APPROVAL

- No admixture brand shall be used in the work unless it is on the Department's current list of approved brands for the type of admixture involved.
- Admixture brands will be considered for addition to the approved list if the manufacturer of the admixture submits to the Transportation Laboratory a sample of the admixture accompanied by certified test results demonstrating that the admixture complies with the requirements in the appropriate ASTM Designation and these specifications. The sample shall be sufficient to permit performance of all required tests. Approval of admixture brands will be dependent upon a determination as to compliance with the requirements, based on the certified test results submitted, together with tests the Department may elect to perform.
- When the Contractor proposes to use an admixture of a brand and type on the current list of approved admixture brands, the Contractor shall furnish a Certificate of Compliance from the manufacturer, as provided in Section 6-1.07, "Certificates of Compliance," certifying that the admixture furnished is the same as that previously approved. If a previously approved admixture is not accompanied by a Certificate of Compliance, the admixture shall not be used in the work until the Engineer has had sufficient time to make the appropriate tests and has approved the admixture for use. The Engineer may take samples for testing at any time, whether or not the admixture has been accompanied by a Certificate of Compliance.

• If a mineral admixture is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the manufacturer or supplier of the mineral admixture. If the mineral admixture is used in ready-mix concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product.

90-4.04 REQUIRED USE OF CHEMICAL ADMIXTURES AND CALCIUM CHLORIDE

- When the use of a chemical admixture or calcium chloride is specified, the admixture shall be used at the dosage specified, except that if no dosage is specified, the admixture shall be used at the dosage normally recommended by the manufacturer of the admixture.
- Calcium chloride shall be dispensed in liquid, flake, or pellet form. Calcium chloride dispensed in liquid form shall conform to the provisions for dispensing liquid admixtures in Section 90-4.10, "Proportioning and Dispensing Liquid Admixtures."

90-4.05 OPTIONAL USE OF CHEMICAL ADMIXTURES

- The Contractor will be permitted to use Type A or F, water-reducing; Type B, retarding; or Type D or G, water-reducing and retarding admixtures as described in ASTM Designation: C 494 to conserve cementitious material or to facilitate any concrete construction application subject to the following conditions:
 - A. When a water-reducing admixture or a water-reducing and retarding admixture is used, the cementitious material content specified or ordered may be reduced by a maximum of 5 percent by mass, except that the resultant cementitious material content shall be not less than 300 kilograms per cubic meter; and
 - B. When a reduction in cementitious material content is made, the dosage of admixture used shall be the dosage used in determining approval of the admixture.
- Unless otherwise specified, a Type C accelerating chemical admixture conforming to the requirements in ASTM Designation: C 494, may be used in portland cement concrete. Inclusion in the mix design submitted for approval will not be required provided that the admixture is added to counteract changing conditions that contribute to delayed setting of the portland cement concrete, and the use or change in dosage of the admixture is approved in writing by the Engineer.

90-4.06 REQUIRED USE OF AIR-ENTRAINING ADMIXTURES

• When air-entrainment is specified or ordered by the Engineer, the air-entraining admixture shall be used in amounts to produce a concrete having the specified air content as determined by California Test 504.

90-4.07 OPTIONAL USE OF AIR-ENTRAINING ADMIXTURES

• When air-entrainment has not been specified or ordered by the Engineer, the Contractor will be permitted to use an air-entraining admixture to facilitate the use of any construction procedure or equipment provided that the average air content, as determined by California Test 504, of 3 successive tests does not exceed 4 percent, and no single test value exceeds 5.5 percent. If the Contractor elects to use an air-entraining admixture in concrete for pavement, the Contractor shall so indicate at the time the Contractor designates the source of aggregate as provided in Section 40-1.015, "Cement Content."

90-4.08 REQUIRED USE OF MINERAL ADMIXTURES

- Unless otherwise specified, mineral admixture shall be combined with cement to make cementitious material.
- The calcium oxide content of mineral admixtures shall not exceed 10 percent and the available alkali, as sodium oxide equivalent, shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 618.
- The amounts of cement and mineral admixture used in cementitious material shall be sufficient to satisfy the minimum cementitious material content requirements specified in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," and shall conform to the following:
 - A. The minimum amount of cement shall not be less than 75 percent by mass of the specified minimum cementitious material content:
 - B. The minimum amount of mineral admixture to be combined with cement shall be determined using one of the following criteria:
 - 1. When the calcium oxide content of a mineral admixture is equal to or less than 2 percent by mass, the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix;

- 2. When the calcium oxide content of a mineral admixture is greater than 2 percent, the amount of mineral admixture shall not be less than 25 percent by mass of the total amount of cementitious material to be used in the mix.
- 3. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," is used, the amount of mineral admixture shall not be less than 10 percent by mass of the total amount of cementitious material to be used in the mix
- C. The total amount of mineral admixture shall not exceed 35 percent by mass of the total amount of cementitious material to be used in the mix. Where Section 90-1.01, "Description," specifies a maximum cementitious content in kilograms per cubic meter, the total mass of cement and mineral admixture per cubic meter shall not exceed the specified maximum cementitious material content.

90-4.09 BLANK

90-4.10 PROPORTIONING AND DISPENSING LIQUID ADMIXTURES

- Chemical admixtures and air-entraining admixtures shall be dispensed in liquid form. Dispensers for liquid admixtures shall have sufficient capacity to measure at one time the prescribed quantity required for each batch of concrete. Each dispenser shall include a graduated measuring unit into which liquid admixtures are measured to within ± 5 percent of the prescribed quantity for each batch. Dispensers shall be located and maintained so that the graduations can be accurately read from the point at which proportioning operations are controlled to permit a visual check of batching accuracy prior to discharge. Each measuring unit shall be clearly marked for the type and quantity of admixture.
- Each liquid admixture dispensing system shall be equipped with a sampling device consisting of a valve located in a safe and readily accessible position such that a sample of the admixture may be withdrawn slowly by the Engineer.
- If more than one liquid admixture is used in the concrete mix, each liquid admixture shall have a separate measuring unit and shall be dispensed by injecting equipment located in such a manner that the admixtures are not mixed at high concentrations and do not interfere with the effectiveness of each other. When air-entraining admixtures are used in conjunction with other liquid admixtures, the air-entraining admixture shall be the first to be incorporated into the mix.
- When automatic proportioning devices are required for concrete pavement, dispensers for liquid admixtures shall operate automatically with the batching control equipment. The dispensers shall be equipped with an automatic warning system in good operating condition that will provide a visible or audible signal at the point at which proportioning operations are controlled when the quantity of admixture measured for each batch of concrete varies from the preselected dosage by more than 5 percent, or when the entire contents of the measuring unit are not emptied from the dispenser into each batch of concrete
- Unless liquid admixtures are added to premeasured water for the batch, their discharge into the batch shall be arranged to flow into the stream of water so that the admixtures are well dispersed throughout the batch, except that air-entraining admixtures may be dispensed directly into moist sand in the batching bins provided that adequate control of the air content of the concrete can be maintained.
- Liquid admixtures requiring dosages greater than 2.5 L/m³ shall be considered to be water when determining the total amount of free water as specified in Section 90-6.06, "Amount of Water and Penetration."
- Special admixtures, such as "high range" water reducers that may contribute to a high rate of slump loss, shall be measured and dispensed as recommended by the admixture manufacturer and as approved by the Engineer.

90-4.11 STORAGE, PROPORTIONING, AND DISPENSING OF MINERAL ADMIXTURES

- Mineral admixtures shall be protected from exposure to moisture until used. Sacked material shall be piled to permit access for tally, inspection and identification for each shipment.
- Adequate facilities shall be provided to assure that mineral admixtures meeting the specified requirements are kept separate from other mineral admixtures in order to prevent any but the specified mineral admixtures from entering the work. Safe and suitable facilities for sampling mineral admixtures shall be provided at the weigh hopper or in the feed line immediately in advance of the hopper.
- Mineral admixtures shall be incorporated into concrete using equipment conforming to the requirements for cement weigh hoppers, and charging and discharging mechanisms in ASTM Designation: C 94, in Section 90-5.03, "Proportioning," and in this Section 90-4.11.
- When concrete is completely mixed in stationary paving mixers, the mineral admixture shall be weighed in a separate weigh hopper conforming to the provisions for cement weigh hoppers and charging and discharging mechanisms in Section 90-5.03A, "Proportioning for Pavement," and the mineral admixture and cement shall be introduced simultaneously into the mixer proportionately with the aggregate. If the mineral admixture is not weighed in a separate weigh hopper, the Contractor shall provide certification that the stationary mixer is capable of mixing the cement, admixture, aggregates and water uniformly prior to discharge. Certification shall contain the following:

- A. Test results for 2 compressive strength test cylinders of concrete taken within the first one-third and 2 compressive strength test cylinders of concrete taken within the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;"
- B. Calculations demonstrating that the difference in the averages of 2 compressive strengths taken in the first one-third is no greater than 7.5 percent different than the averages of 2 compressive strengths taken in the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" and
- C. The mixer rotation speed and time of mixing prior to discharge that are required to produce a mix that meets the requirements above.

90-5 PROPORTIONING

90-5.01 STORAGE OF AGGREGATES

- Aggregates shall be stored or stockpiled in such a manner that separation of coarse and fine particles of each size shall be avoided and also that the various sizes shall not become intermixed before proportioning.
- Aggregates shall be stored or stockpiled and handled in a manner that shall prevent contamination by foreign materials. In addition, storage of aggregates at batching or mixing facilities that are erected subsequent to the award of the contract and that furnish concrete to the project shall conform to the following:
 - A. Intermingling of the different sizes of aggregates shall be positively prevented. The Contractor shall take the necessary measures to prevent intermingling. The preventive measures may include, but are not necessarily limited to, physical separation of stockpiles or construction of bulkheads of adequate length and height; and
 - B. Contamination of aggregates by contact with the ground shall be positively prevented. The Contractor shall take the necessary measures to prevent contamination. The preventive measures shall include, but are not necessarily limited to, placing aggregates on wooden platforms or on hardened surfaces consisting of portland cement concrete, asphalt concrete, or cement treated material.
- In placing aggregates in storage or in moving the aggregates from storage to the weigh hopper of the batching plant, any method that may cause segregation, degradation, or the combining of materials of different gradings that will result in any size of aggregate at the weigh hopper failing to meet the grading requirements, shall be discontinued. Any method of handling aggregates that results in excessive breakage of particles shall be discontinued. The use of suitable devices to reduce impact of falling aggregates may be required by the Engineer.

90-5.02 PROPORTIONING DEVICES

- Weighing, measuring, or metering devices used for proportioning materials shall conform to the requirements in Section 9-1.01, "Measurement of Quantities," and this Section 90-5.02. In addition, automatic weighing systems shall comply with the requirements for automatic proportioning devices in Section 90-5.03A, "Proportioning for Pavement." Automatic devices shall be automatic to the extent that the only manual operation required for proportioning the aggregates, cement, and mineral admixture for one batch of concrete is a single operation of a switch or starter.
- Proportioning devices shall be tested at the expense of the Contractor as frequently as the Engineer may deem necessary to ensure their accuracy.
- Weighing equipment shall be insulated against vibration or movement of other operating equipment in the plant. When the plant is in operation, the mass of each batch of material shall not vary from the mass designated by the Engineer by more than the tolerances specified herein.
- Equipment for cumulative weighing of aggregate shall have a zero tolerance of ± 0.5 percent of the designated total batch mass of the aggregate. For systems with individual weigh hoppers for the various sizes of aggregate, the zero tolerance shall be ± 0.5 percent of the individual batch mass designated for each size of aggregate. Equipment for cumulative weighing of cement and mineral admixtures shall have a zero tolerance of ± 0.5 percent of the designated total batch mass of the cement and mineral admixture. Equipment for weighing cement or mineral admixture separately shall have a zero tolerance of ± 0.5 percent of their designated individual batch masses. Equipment for measuring water shall have a zero tolerance of ± 0.5 percent of its designated mass or volume.
- The mass indicated for any batch of material shall not vary from the preselected scale setting by more than the following:
 - A. Aggregate weighed cumulatively shall be within 1.0 percent of the designated total batch mass of the aggregate. Aggregates weighed individually shall be within 1.5 percent of their respective designated batch masses; and

- B. Cement shall be within 1.0 percent of its designated batch mass. When weighed individually, mineral admixture shall be within 1.0 percent of its designated batch mass. When mineral admixture and cement are permitted to be weighed cumulatively, cement shall be weighed first to within 1.0 percent of its designated batch mass, and the total for cement and mineral admixture shall be within 1.0 percent of the sum of their designated batch masses; and
- C. Water shall be within 1.5 percent of its designated mass or volume.
- Each scale graduation shall be approximately 0.001 of the total capacity of the scale. The capacity of scales for weighing cement, mineral admixture, or cement plus mineral admixture and aggregates shall not exceed that of commercially available scales having single graduations indicating a mass not exceeding the maximum permissible mass variation above, except that no scale shall be required having a capacity of less than 500 kg, with 0.5-kg graduations.

90-5.03 PROPORTIONING

- Proportioning shall consist of dividing the aggregates into the specified sizes, each stored in a separate bin, and combining them with cement, mineral admixture, and water as provided in these specifications. Aggregates shall be proportioned by mass.
- At the time of batching, aggregates shall have been dried or drained sufficiently to result in a stable moisture content such that no visible separation of water from aggregate will take place during transportation from the proportioning plant to the point of mixing. In no event shall the free moisture content of the fine aggregate at the time of batching exceed 8 percent of its saturated, surface-dry mass.
- Should separate supplies of aggregate material of the same size group, but of different moisture content or specific gravity or surface characteristics affecting workability, be available at the proportioning plant, withdrawals shall be made from one supply exclusively and the materials therein completely exhausted before starting upon another.
- Bulk "Type IP (MS) Modified" cement shall be weighed in an individual hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer.
- Bulk cement and mineral admixture may be weighed in separate, individual weigh hoppers or may be weighed in the same weigh hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. If the cement and mineral admixture are weighed cumulatively, the cement shall be weighed first.
- When cement and mineral admixtures are weighed in separate weigh hoppers, the weigh systems for the proportioning of the aggregate, the cement, and the mineral admixture shall be individual and distinct from all other weigh systems. Each weigh system shall be equipped with a hopper, a lever system, and an indicator to constitute an individual and independent material weighing device. The cement and the mineral admixture shall be discharged into the mixer simultaneously with the aggregate.
- The scales and weigh hoppers for bulk weighing cement, mineral admixture, or cement plus mineral admixture shall be separate and distinct from the aggregate weighing equipment.
- For batches with a volume of one cubic meter or more, the batching equipment shall conform to one of the following combinations:
 - A. Separate boxes and separate scale and indicator for weighing each size of aggregate.
 - B. Single box and scale indicator for all aggregates.
 - C. Single box or separate boxes and automatic weighing mechanism for all aggregates.
- In order to check the accuracy of batch masses, the gross mass and tare mass of batch trucks, truck mixers, truck agitators, and non-agitating hauling equipment shall be determined when ordered by the Engineer. The equipment shall be weighed at the Contractor's expense on scales designated by the Engineer.

90-5.03A Proportioning for Pavement

- Aggregates and bulk cement, mineral admixture, and cement plus mineral admixture for use in pavement shall be proportioned by mass by means of automatic proportioning devices of approved type conforming to these specifications.
- The Contractor shall install and maintain in operating condition an electronically actuated moisture meter that will indicate, on a readily visible scale, changes in the moisture content of the fine aggregate as it is batched within a sensitivity of 0.5 percent by mass of the fine aggregate.
- The batching of cement, mineral admixture, or cement plus mineral admixture and aggregate shall be interlocked so that a new batch cannot be started until all weigh hoppers are empty, the proportioning devices are within zero tolerance, and the discharge gates are closed. The interlock shall permit no part of the batch to be discharged until all aggregate hoppers and the cement and mineral admixture hoppers or the cement plus mineral admixture hopper are charged with masses that are within the tolerances specified in Section 90-5.02, "Proportioning Devices."
- When interlocks are required for cement and mineral admixture charging mechanisms and cement and mineral admixtures are weighed cumulatively, their charging mechanisms shall be interlocked to prevent the introduction of mineral

admixture until the mass of cement in the cement weigh hopper is within the tolerances specified in Section 90-5.02, "Proportioning Devices."

- The discharge gate on the cement and mineral admixture hoppers or the cement plus mineral admixture hopper shall be designed to permit regulating the flow of cement, mineral admixture, or cement plus mineral admixture into the aggregate as directed by the Engineer.
- When separate weigh boxes are used for each size of aggregate, the discharge gates shall permit regulating the flow of each size of aggregate as directed by the Engineer.
- Material discharged from the several bins shall be controlled by gates or by mechanical conveyors. The means of withdrawal from the several bins, and of discharge from the weigh box, shall be interlocked so that not more than one bin can discharge at a time, and so that the weigh box cannot be tripped until the required quantity from each of the several bins has been deposited therein. Should a separate weigh box be used for each size of aggregate, all may be operated and discharged simultaneously.
- When the discharge from the several bins is controlled by gates, each gate shall be actuated automatically so that the required mass is discharged into the weigh box, after which the gate shall automatically close and lock.
- The automatic weighing system shall be designed so that all proportions required may be set on the weighing controller at the same time.

90-6 MIXING AND TRANSPORTING

90-6.01 **GENERAL**

- Concrete shall be mixed in mechanically operated mixers, except that when permitted by the Engineer, batches not exceeding 0.25 m³ may be mixed by hand methods in conformance with the provisions in Section 90-6.05, "Hand-Mixing."
- Equipment having components made of aluminum or magnesium alloys that would have contact with plastic concrete during mixing, transporting, or pumping of portland cement concrete shall not be used.
- Concrete shall be homogeneous and thoroughly mixed, and there shall be no lumps or evidence of undispersed cement, mineral admixture, or cement plus mineral admixture.
- Uniformity of concrete mixtures will be determined by differences in penetration as determined by California Test 533, or slump as determined by ASTM Designation: C 143, and by variations in the proportion of coarse aggregate as determined by California Test 529.
- When the mix design specifies a penetration value, the difference in penetration, determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed 10 mm. When the mix design specifies a slump value, the difference in slump, determined by comparing slump tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed the values given in the table below. Variation in the proportion of coarse aggregate will be determined by comparing the results of tests of 2 samples of mixed concrete from the same batch or truck mixer load and the difference between the 2 results shall not exceed 100 kg per cubic meter of concrete.

Average Slump	Maximum Permissible Difference	
Less than 100-mm	25-mm	
100-mm to 150-mm	38-mm	
Greater than 150-mm to 225-mm	50-mm	

• The Contractor, at the Contractor's expense, shall furnish samples of the freshly mixed concrete and provide satisfactory facilities for obtaining the samples.

90-6.02 MACHINE MIXING

- Concrete mixers may be of the revolving drum or the revolving blade type, and the mixing drum or blades shall be operated uniformly at the mixing speed recommended by the manufacturer. Mixers and agitators that have an accumulation of hard concrete or mortar shall not be used.
- The temperature of mixed concrete, immediately before placing, shall be not less than 10°C or more than 32°C. Aggregates and water shall be heated or cooled as necessary to produce concrete within these temperature limits. Neither aggregates nor mixing water shall be heated to exceed 65°C. If ice is used to cool the concrete, discharge of the mixer will not be permitted until all ice is melted.
- The batch shall be so charged into the mixer that some water will enter in advance of cementitious materials and aggregates. All water shall be in the drum by the end of the first one-fourth of the specified mixing time.
- Cementitious materials shall be batched and charged into the mixer by means that will not result either in loss of cementitious materials due to the effect of wind, in accumulation of cementitious materials on surfaces of conveyors or hoppers, or in other conditions that reduce or vary the required quantity of cementitious material in the concrete mixture.

- Paving and stationary mixers shall be operated with an automatic timing device. The timing device and discharge mechanism shall be interlocked so that during normal operation no part of the batch will be discharged until the specified mixing time has elapsed.
- The total elapsed time between the intermingling of damp aggregates and all cementitious materials and the start of mixing shall not exceed 30 minutes.
 - The size of batch shall not exceed the manufacturer's guaranteed capacity.
- When producing concrete for pavement or base, suitable batch counters shall be installed and maintained in good operating condition at jobsite batching plants and stationary mixers. The batch counters shall indicate the exact number of batches proportioned and mixed.
 - Concrete shall be mixed and delivered to the jobsite by means of one of the following combinations of operations:
 - A. Mixed completely in a stationary mixer and the mixed concrete transported to the point of delivery in truck agitators or in non-agitating hauling equipment (central-mixed concrete).
 - B. Mixed partially in a stationary mixer, and the mixing completed in a truck mixer (shrink-mixed concrete).
 - C. Mixed completely in a truck mixer (transit-mixed concrete).
 - D. Mixed completely in a paving mixer.
- Agitators may be truck mixers operating at agitating speed or truck agitators. Each mixer and agitator shall have attached thereto in a prominent place a metal plate or plates on which is plainly marked the various uses for which the equipment is designed, the manufacturer's guaranteed capacity of the drum or container in terms of the volume of mixed concrete and the speed of rotation of the mixing drum or blades.
- Truck mixers shall be equipped with electrically or mechanically actuated revolution counters by which the number of revolutions of the drum or blades may readily be verified.
- When shrink-mixed concrete is furnished, concrete that has been partially mixed at a central plant shall be transferred to a truck mixer and all requirements for transit-mixed concrete shall apply. No credit in the number of revolutions at mixing speed shall be allowed for partial mixing in a central plant.

90-6.03 TRANSPORTING MIXED CONCRETE

- Mixed concrete may be transported to the delivery point in truck agitators or truck mixers operating at the speed designated by the manufacturer of the equipment as agitating speed, or in non-agitating hauling equipment, provided the consistency and workability of the mixed concrete upon discharge at the delivery point is suitable for adequate placement and consolidation in place, and provided the mixed concrete after hauling to the delivery point conforms to the provisions in Section 90-6.01, "General."
- Truck agitators shall be loaded not to exceed the manufacturer's guaranteed capacity and shall maintain the mixed concrete in a thoroughly mixed and uniform mass during hauling.
- Bodies of non-agitating hauling equipment shall be constructed so that leakage of the concrete mix, or any part thereof, will not occur at any time.
- Concrete hauled in open-top vehicles shall be protected during hauling against rain or against exposure to the sun for more than 20 minutes when the ambient temperature exceeds 24°C.
- No additional mixing water shall be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer. If the Engineer authorizes additional water to be incorporated into the concrete, the drum shall be revolved not less than 30 revolutions at mixing speed after the water is added and before discharge is commenced.
- The rate of discharge of mixed concrete from truck mixer-agitators shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open.
- When a truck mixer or agitator is used for transporting concrete to the delivery point, discharge shall be completed within 1.5 hours or before 250 revolutions of the drum or blades, whichever occurs first, after the introduction of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time allowed may be less than 1.5 hours.
- When non-agitating hauling equipment is used for transporting concrete to the delivery point, discharge shall be completed within one hour after the addition of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time between the introduction of cement to the aggregates and discharge shall not exceed 45 minutes.
- Each load of concrete delivered at the jobsite shall be accompanied by a weighmaster certificate showing the mix identification number, non-repeating load number, date and time at which the materials were batched, the total amount of water added to the load, and for transit-mixed concrete, the reading of the revolution counter at the time the truck mixer is charged with cement. This weighmaster certificate shall also show the actual scale masses (kilograms) for the ingredients batched. Theoretical or target batch masses shall not be used as a substitute for actual scale masses.

- Weighmaster certificates shall be provided in printed form, or if approved by the Engineer, the data may be submitted in electronic media. Electronic media shall be presented in a tab-delimited format on a 90 mm diskette with a capacity of at least 1.4 megabytes. Captured data, for the ingredients represented by each batch shall be "line feed, carriage return" (LFCR) and "one line, separate record" with allowances for sufficient fields to satisfy the amount of data required by these specifications.
- The Contractor may furnish a weighmaster certificate accompanied by a separate certificate that lists the actual batch masses or measurements for a load of concrete provided that both certificates are imprinted with the same non-repeating load number that is unique to the contract and delivered to the jobsite with the load.
- Weighmaster certificates furnished by the Contractor shall conform to the provisions in Section 9-1.01, "Measurement of Quantities."

90-6.04 TIME OR AMOUNT OF MIXING

- Mixing of concrete in paving or stationary mixers shall continue for the required mixing time after all ingredients, except water and admixture, if added with the water, are in the mixing compartment of the mixer before any part of the batch is released. Transfer time in multiple drum mixers shall not be counted as part of the required mixing time.
- The required mixing time, in paving or stationary mixers, of concrete used for concrete structures, except minor structures, shall be not less than 90 seconds or more than 5 minutes, except that when directed by the Engineer in writing, the requirements of the following paragraph shall apply.
- The required mixing time, in paving or stationary mixers, except as provided in the preceding paragraph, shall be not less than 50 seconds or more than 5 minutes.
- The minimum required revolutions at the mixing speed for transit-mixed concrete shall not be less than that recommended by the mixer manufacturer, but in no case shall the number of revolutions be less than that required to consistently produce concrete conforming to the provisions for uniformity in Section 90-6.01, "General."

90-6.05 HAND-MIXING

• Hand-mixed concrete shall be made in batches of not more than 0.25 m³ and shall be mixed on a watertight, level platform. The proper amount of coarse aggregate shall be measured in measuring boxes and spread on the platform and the fine aggregate shall be spread on this layer, the 2 layers being not more than 0.3 meters in total depth. On this mixture shall be spread the dry cement and mineral admixture and the whole mass turned no fewer than 2 times dry; then sufficient clean water shall be added, evenly distributed, and the whole mass again turned no fewer than 3 times, not including placing in the carriers or forms.

90-6.06 AMOUNT OF WATER AND PENETRATION

• The amount of water used in concrete mixes shall be regulated so that the penetration of the concrete as determined by California Test 533 or the slump of the concrete as determined by ASTM Designation: C 143 is within the "Nominal" values shown in the following table. When the penetration or slump of the concrete is found to exceed the nominal values listed, the mixture of subsequent batches shall be adjusted to reduce the penetration or slump to a value within the nominal range shown. Batches of concrete with a penetration or slump exceeding the maximum values listed shall not be used in the work. When Type F or Type G chemical admixtures are added to the mix, the penetration requirements shall not apply and the slump shall not exceed 225 mm after the chemical admixtures are added.

Type of Work	Nominal		Maxi	mum
	Penetration	Slump	Penetration	Slump
	(mm)	(mm)	(mm)	(mm)
Concrete Pavement	0-25	_	40	_
Non-reinforced concrete facilities	0-35	_	50	_
Reinforced concrete structures				
Sections over 300-mm thick	0-35		65	
Sections 300-mm thick or less	0-50		75	
Concrete placed under water		150-200		225
Cast-in-place concrete piles	65-90	130-180	100	200

- The amount of free water used in concrete shall not exceed 183 kg/m³, plus 20 kg for each required 100 kg of cementitious material in excess of 325 kg/m³.
- The term free water is defined as the total water in the mixture minus the water absorbed by the aggregates in reaching a saturated surface-dry condition.

- Where there are adverse or difficult conditions that affect the placing of concrete, the above specified penetration and free water content limitations may be exceeded providing the Contractor is granted permission by the Engineer in writing to increase the cementitious material content per cubic meter of concrete. The increase in water and cementitious material shall be at a ratio not to exceed 30 kg of water per added 100 kg of cementitious material per cubic meter. The cost of additional cementitious material and water added under these conditions shall be at the Contractor's expense and no additional compensation will be allowed therefor.
- The equipment for supplying water to the mixer shall be constructed and arranged so that the amount of water added can be measured accurately. Any method of discharging water into the mixer for a batch shall be accurate within 1.5 percent of the quantity of water required to be added to the mix for any position of the mixer. Tanks used to measure water shall be designed so that water cannot enter while water is being discharged into the mixer and discharge into the mixer shall be made rapidly in one operation without dribbling. All equipment shall be arranged so as to permit checking the amount of water delivered by discharging into measured containers.

90-7 CURING CONCRETE

90-7.01 METHODS OF CURING

Newly placed concrete shall be cured by the methods specified in this Section 90-7.01 and the special provisions.

90-7.01A Water Method

- The concrete shall be kept continuously wet by the application of water for a minimum curing period of 7 days after the concrete has been placed.
- When a curing medium consisting of cotton mats, rugs, carpets, or earth or sand blankets is to be used to retain the moisture, the entire surface of the concrete shall be kept damp by applying water with a nozzle that so atomizes the flow that a mist and not a spray is formed, until the surface of the concrete is covered with the curing medium. The moisture from the nozzle shall not be applied under pressure directly upon the concrete and shall not be allowed to accumulate on the concrete in a quantity sufficient to cause a flow or wash the surface. At the expiration of the curing period, the concrete surfaces shall be cleared of all curing mediums.
- When concrete bridge decks and flat slabs are to be cured without the use of a curing medium, the entire surface of the bridge deck or slab shall be kept damp by the application of water with an atomizing nozzle as specified in the preceding paragraph, until the concrete has set, after which the entire surface of the concrete shall be sprinkled continuously with water for a period of not less than 7 days.

90-7.01B Curing Compound Method

- Surfaces of the concrete that are exposed to the air shall be sprayed uniformly with a curing compound.
- Curing compounds to be used shall be as follows:
- 1. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B, except the resin type shall be poly-alpha-methylstyrene.
- 2. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B.
- 3. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class A.
- 4. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class B.
- 5. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class A.
- 6. Non-pigmented curing compound with fugitive dye conforming to the requirements in ASTM Designation: C 309, Type 1-D, Class A.
- The infrared scan for the dried vehicle from curing compound (1) shall match the infrared scan on file at the Transportation Laboratory.
- The loss of water for each type of curing compound, when tested in conformance with the requirements in California Test 534, shall not be more than 0.15-kg/m² in 24 hours.
 - The curing compound to be used will be specified elsewhere in these specifications or in the special provisions.
- When the use of curing compound is required or permitted elsewhere in these specifications or in the special provisions and no specific kind is specified, any of the curing compounds listed above may be used.
 - Curing compound shall be applied at a nominal rate of 3.7 m²/L, unless otherwise specified.
- At any point, the application rate shall be within ± 1.2 m $^2/L$ of the nominal rate specified, and the average application rate shall be within ± 0.5 m $^2/L$ of the nominal rate specified when tested in conformance with the requirements in California Test 535. Runs, sags, thin areas, skips, or holidays in the applied curing compound shall be evidence that the application is not satisfactory.

- Curing compounds shall be applied using power operated spray equipment. The power operated spraying equipment shall be equipped with an operational pressure gage and a means of controlling the pressure. Hand spraying of small and irregular areas that are not reasonably accessible to mechanical spraying equipment, in the opinion of the Engineer, may be permitted.
- The curing compound shall be applied to the concrete following the surface finishing operation, immediately before the moisture sheen disappears from the surface, but before any drying shrinkage or craze cracks begin to appear. In the event of any drying or cracking of the surface, application of water with an atomizing nozzle as specified in Section 90-7.01A, "Water Method," shall be started immediately and shall be continued until application of the compound is resumed or started; however, the compound shall not be applied over any resulting freestanding water. Should the film of compound be damaged from any cause before the expiration of 7 days after the concrete is placed in the case of structures and 72 hours in the case of pavement, the damaged portion shall be repaired immediately with additional compound.
- At the time of use, compounds containing pigments shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. A paddle shall be used to loosen all settled pigment from the bottom of the container, and a power driven agitator shall be used to disperse the pigment uniformly throughout the vehicle.
 - Agitation shall not introduce air or other foreign substance into the curing compound.
- The manufacturer shall include in the curing compound the necessary additives for control of sagging, pigment settling, leveling, de-emulsification, or other requisite qualities of a satisfactory working material. Pigmented curing compounds shall be manufactured so that the pigment does not settle badly, does not cake or thicken in the container, and does not become granular or curdled. Settlement of pigment shall be a thoroughly wetted, soft, mushy mass permitting the complete and easy vertical penetration of a paddle. Settled pigment shall be easily redispersed, with minimum resistance to the sideways manual motion of the paddle across the bottom of the container, to form a smooth uniform product of the proper consistency.
- Curing compounds shall remain sprayable at temperatures above 4°C and shall not be diluted or altered after manufacture.
 - The curing compound shall be packaged in clean 1040-L totes, 210-L barrels
- or 19-L pails shall be supplied from a suitable storage tank located at the jobsite. The containers shall comply with "Title 49, Code of Federal Regulations, Hazardous Materials Regulations." The 1040-L totes and the 210-L barrels shall have removable lids and airtight fasteners. The 19-L pails shall be round and have standard full open head and bail. Lids with bungholes shall not be permitted. Settling or separation of solids in containers, except tanks, must be completely redispersed with low speed mixing prior to use, in conformance with these specifications and the manufacturer's recommendations. Mixing shall be accomplished either manually by use of a paddle or by use of a mixing blade driven by a drill motor, at low speed. Mixing blades shall be the type used for mixing paint. On site storage tanks shall be kept clean and free of contaminants. Each tank shall have a permanent system designed to completely redisperse settled material without introducing air or other foreign substances.
- Steel containers and lids shall be lined with a coating that will prevent destructive action by the compound or chemical agents in the air space above the compound. The coating shall not come off the container or lid as skins. Containers shall be filled in a manner that will prevent skinning. Plastic containers shall not react with the compound.
- Each container shall be labeled with the manufacturer's name, kind of curing compound, batch number, volume, date of manufacture, and volatile organic compound (VOC) content. The label shall also warn that the curing compound containing pigment shall be well stirred before use. Precautions concerning the handling and the application of curing compound shall be shown on the label of the curing compound containers in conformance with the Construction Safety Orders and General Industry Safety Orders of the State of California.
- Containers of curing compound shall be labeled to indicate that the contents fully comply with the rules and regulations concerning air pollution control in the State of California.
- When the curing compound is shipped in tanks or tank trucks, a shipping invoice shall accompany each load. The invoice shall contain the same information as that required herein for container labels.
 - Curing compound will be sampled by the Engineer at the source of supply or at the jobsite or at both locations.
- Curing compound shall be formulated so as to maintain the specified properties for a minimum of one year. The Engineer may require additional testing before use to determine compliance with these specifications if the compound has not been used within one year or whenever the Engineer has reason to believe the compound is no longer satisfactory.
- Tests will be conducted in conformance with the latest ASTM test methods and methods in use by the Transportation Laboratory.

90-7.01C Waterproof Membrane Method

• The exposed finished surfaces of concrete shall be sprayed with water, using a nozzle that so atomizes the flow that a mist and not a spray is formed, until the concrete has set, after which the curing membrane shall be placed. The curing membrane shall remain in place for a period of not less than 72 hours.

- Sheeting material for curing concrete shall conform to the requirements in AASHTO Designation: M 171 for white reflective materials.
- The sheeting material shall be fabricated into sheets of such width as to provide a complete cover for the entire concrete surface. Joints in the sheets shall be securely cemented together in such a manner as to provide a waterproof joint. The joint seams shall have a minimum lap of 100 mm.
- The sheets shall be securely weighted down by placing a bank of earth on the edges of the sheets or by other means satisfactory to the Engineer.
- Should any portion of the sheets be broken or damaged before the expiration of 72 hours after being placed, the broken or damaged portions shall be immediately repaired with new sheets properly cemented into place.
- Sections of membrane that have lost their waterproof qualities or have been damaged to such an extent as to render them unfit for curing the concrete shall not be used.

90-7.01D Forms-In-Place Method

- Formed surfaces of concrete may be cured by retaining the forms in place. The forms shall remain in place for a minimum period of 7 days after the concrete has been placed, except that for members over 0.5-m in least dimension the forms shall remain in place for a minimum period of 5 days.
- Joints in the forms and the joints between the end of forms and concrete shall be kept moisture tight during the curing period. Cracks in the forms and cracks between the forms and the concrete shall be resealed by methods subject to the approval of the Engineer.

90-7.02 CURING PAVEMENT

- The entire exposed area of the pavement, including edges, shall be cured by the waterproof membrane method, or curing compound method using curing compound (1) or (2) as the Contractor may elect. Should the side forms be removed before the expiration of 72 hours following the start of curing, the exposed pavement edges shall also be cured. If the pavement is cured by means of the curing compound method, the sawcut and all portions of the curing compound that have been disturbed by sawing operations shall be restored by spraying with additional curing compound.
- Curing shall commence as soon as the finishing process provided in Section 40-1.10, "Final Finishing," has been completed. The method selected shall conform to the provisions in Section 90-7.01, "Methods of Curing."
- When the curing compound method is used, the compound shall be applied to the entire pavement surface by mechanical sprayers. Spraying equipment shall be of the fully atomizing type equipped with a tank agitator that provides for continual agitation of the curing compound during the time of application. The spray shall be adequately protected against wind, and the nozzles shall be so oriented or moved mechanically transversely as to result in the minimum specified rate of coverage being applied uniformly on exposed faces. Hand spraying of small and irregular areas, and areas inaccessible to mechanical spraying equipment, in the opinion of the Engineer, will be permitted. When the ambient air temperature is above 15°C, the Contractor shall fog the surface of the concrete with a fine spray of water as specified in Section 90-7.01A, "Water Method." The surface of the pavement shall be kept moist between the hours of 10:00 a.m. and 4:30 p.m. on the day the concrete is placed. However, the fogging done after the curing compound has been applied shall not begin until the compound has set sufficiently to prevent displacement. Fogging shall be discontinued if ordered in writing by the Engineer.

90-7.03 CURING STRUCTURES

- Newly placed concrete for cast-in-place structures, other than highway bridge decks, shall be cured by the water method, the forms-in-place method, or, as permitted herein, by the curing compound method, in conformance with the provisions in Section 90-7.01, "Methods of Curing."
- The curing compound method using a pigmented curing compound may be used on concrete surfaces of construction joints, surfaces that are to be buried underground, and surfaces where only Ordinary Surface Finish is to be applied and on which a uniform color is not required and that will not be visible from a public traveled way. If the Contractor elects to use the curing compound method on the bottom slab of box girder spans, the curing compound shall be curing compound (1).
- The top surface of highway bridge decks shall be cured by both the curing compound method and the water method. The curing compound shall be curing compound (1).
- Concrete surfaces of minor structures, as defined in Section 51-1.02, "Minor Structures," shall be cured by the water method, the forms-in-place method or the curing compound method.
- When deemed necessary by the Engineer during periods of hot weather, water shall be applied to concrete surfaces being cured by the curing compound method or by the forms-in-place method, until the Engineer determines that a cooling effect is no longer required. Application of water for this purpose will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."

90-7.04 CURING PRECAST CONCRETE MEMBERS

- Precast concrete members shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." Curing shall be provided for the minimum time specified for each method or until the concrete reaches its design strength, whichever is less. Steam curing may also be used for precast members and shall conform to the following provisions:
 - A. After placement of the concrete, members shall be held for a minimum 4-hour presteaming period. If the ambient air temperature is below 10°C, steam shall be applied during the presteaming period to hold the air surrounding the member at a temperature between 10°C and 32°C.
 - B. To prevent moisture loss on exposed surfaces during the presteaming period, members shall be covered as soon as possible after casting or the exposed surfaces shall be kept wet by fog spray or wet blankets.
 - C. Enclosures for steam curing shall allow free circulation of steam about the member and shall be constructed to contain the live steam with a minimum moisture loss. The use of tarpaulins or similar flexible covers will be permitted, provided they are kept in good repair and secured in such a manner as to prevent the loss of steam and moisture.
 - D. Steam at the jets shall be at low pressure and in a saturated condition. Steam jets shall not impinge directly on the concrete, test cylinders, or forms. During application of the steam, the temperature rise within the enclosure shall not exceed 22°C per hour. The curing temperature throughout the enclosure shall not exceed 65°C and shall be maintained at a constant level for a sufficient time necessary to develop the required transfer strength. Control cylinders shall be covered to prevent moisture loss and shall be placed in a location where temperature is representative of the average temperature of the enclosure.
 - E. Temperature recording devices that will provide an accurate, continuous, permanent record of the curing temperature shall be provided. A minimum of one temperature recording device per 60 m of continuous bed length will be required for checking temperature.
 - F. Members in pretension beds shall be detensioned immediately after the termination of steam curing while the concrete and forms are still warm, or the temperature under the enclosure shall be maintained above 15°C until the stress is transferred to the concrete.
 - G. Curing of precast concrete will be considered completed after termination of the steam curing cycle.

90-7.05 CURING PRECAST PRESTRESSED CONCRETE PILES

- Newly placed concrete for precast prestressed concrete piles shall be cured in conformance with the provisions in Section 90-7.04, "Curing Precast Concrete Members," except that piles with a class designation ending in C (corrosion resistant) shall be cured as follows:
 - A. Piles shall be either steam cured or water cured. If water curing is used, the piles shall be kept continuously wet by the application of water in conformance with the provisions in Section 90-7.01A, "Water Method."
 - B. If steam curing is used, the steam curing provisions in Section 90-7.04, "Curing Precast Concrete Members," shall apply except that the piles shall be kept continuously wet for their entire length for a period of not less than 3 days, including the holding and steam curing periods.

90-7.06 CURING SLOPE PROTECTION

- Concrete slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."
- Concreted-rock slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing," or with a blanket of earth kept wet for 72 hours, or by sprinkling with a fine spray of water every 2 hours during the daytime for a period of 3 days.

90-7.07 CURING MISCELLANEOUS CONCRETE WORK

- Exposed surfaces of curbs shall be cured by pigmented curing compounds as specified in Section 90-7.01B, "Curing Compound Method."
- Concrete sidewalks, gutter depressions, island paving, curb ramps, driveways, and other miscellaneous concrete areas shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing."
- Shotcrete shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."
 - Mortar and grout shall be cured by keeping the surface damp for 3 days.
- After placing, the exposed surfaces of sign structure foundations, including pedestal portions, if constructed, shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing."

90-8 PROTECTING CONCRETE

90-8.01 GENERAL

- In addition to the provisions in Section 7-1.16, "Contractor's Responsibility for the Work and Materials," the Contractor shall protect concrete as provided in this Section 90-8.
- Concrete shall not be placed on frozen or ice-coated ground or subgrade nor on ice-coated forms, reinforcing steel, structural steel, conduits, precast members, or construction joints.
- Under rainy conditions, placing of concrete shall be stopped before the quantity of surface water is sufficient to damage surface mortar or cause a flow or wash of the concrete surface, unless the Contractor provides adequate protection against damage.
- Concrete that has been frozen or damaged by other causes, as determined by the Engineer, shall be removed and replaced by the Contractor at the Contractor's expense.

90-8.02 PROTECTING CONCRETE STRUCTURES

• Structure concrete and shotcrete used as structure concrete shall be maintained at a temperature of not less than 7°C for 72 hours after placing and at not less than 4°C for an additional 4 days. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete.

90-8.03 PROTECTING CONCRETE PAVEMENT

- Pavement concrete shall be maintained at a temperature of not less than 4°C for 72 hours. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete.
- Except as provided in Section 7-1.08, "Public Convenience," the Contractor shall protect concrete pavement against construction and other activities that abrade, scar, discolor, reduce texture depth, lower coefficient of friction, or otherwise damage the surface. Stockpiling, drifting, or excessive spillage of soil, gravel, petroleum products, and concrete or asphalt mixes on the surface of concrete pavement is prohibited unless otherwise specified in these specifications, the special provisions or permitted by the Engineer.
- When ordered by the Engineer or shown on the plans or specified in the special provisions, pavement crossings shall be constructed for the convenience of public traffic. The material and work necessary for the construction of the crossings, and their subsequent removal and disposal, will be paid for at the contract unit prices for the items of work involved and if there are no contract items for the work involved, payment for pavement crossings will be made by extra work as provided in Section 4-1.03D, "Extra Work.". Where public traffic will be required to cross over the new pavement, Type III portland cement may be used in concrete, if permitted in writing by the Engineer. The pavement may be opened to traffic as soon as the concrete has developed a modulus of rupture of 3.8 MPa. The modulus of rupture will be determined by California Test 523.
- No traffic or Contractor's equipment, except as hereinafter provided, will be permitted on the pavement before a period of 10 days has elapsed after the concrete has been placed, nor before the concrete has developed a modulus of rupture of at least 3.8 MPa. Concrete that fails to attain a modulus of rupture of 3.8 MPa within 10 days shall not be opened to traffic until directed by the Engineer.
- Equipment for sawing weakened plane joints will be permitted on the pavement as specified in Section 40-1.08B, "Weakened Plane Joints."
- When requested in writing by the Contractor, the tracks on one side of paving equipment will be permitted on the pavement after a modulus of rupture of 2.4 MPa has been attained, provided that:
 - A. Unit pressure exerted on the pavement by the paver shall not exceed 135 kPa;
 - B. Tracks with cleats, grousers, or similar protuberances shall be modified or shall travel on planks or equivalent protective material, so that the pavement is not damaged; and
 - C. No part of the track shall be closer than 0.3-m from the edge of pavement.
- In case of visible cracking of, or other damage to the pavement, operation of the paving equipment on the pavement shall be immediately discontinued.
- Damage to the pavement resulting from early use of pavement by the Contractor's equipment as provided above shall be repaired by the Contractor at the Contractor's expense.
- The State will furnish the molds and machines for testing the concrete for modulus of rupture, and the Contractor, at the Contractor's expense, shall furnish the material and whatever labor the Engineer may require.

90-9 COMPRESSIVE STRENGTH

90-9.01 **GENERAL**

- Concrete compressive strength requirements consist of a minimum strength that shall be attained before various loads or stresses are applied to the concrete and, for concrete designated by strength, a minimum strength at the age of 28 days or at the age otherwise allowed in Section 90-1.01, "Description." The various strengths required are specified in these specifications or the special provisions or are shown on the plans.
- The compressive strength of concrete will be determined from test cylinders that have been fabricated from concrete sampled in conformance with the requirements of California Test 539. Test cylinders will be molded and initially field cured in conformance with California Test 540. Test cylinders will be cured and tested after receipt at the testing laboratory in conformance with the requirements of California Test 521. A strength test shall consist of the average strength of 2 cylinders fabricated from material taken from a single load of concrete, except that, if any cylinder should show evidence of improper sampling, molding, or testing, that cylinder shall be discarded and the strength test shall consist of the strength of the remaining cylinder.
- When concrete compressive strength is specified as a prerequisite to applying loads or stresses to a concrete structure or member, test cylinders for other than steam cured concrete will be cured in conformance with Method 1 of California Test 540. The compressive strength of concrete determined for these purposes will be evaluated on the basis of individual tests.
- When concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete strength to be used as a basis for acceptance of other than steam cured concrete will be determined from cylinders cured in conformance with Method 1 of California Test 540. If the result of a single compressive strength test at the maximum age specified or allowed is below the specified strength but is 95 percent or more of the specified strength, the Contractor shall, at the Contractor's expense, make corrective changes, subject to approval of the Engineer, in the mix proportions or in the concrete fabrication procedures, before placing additional concrete, and shall pay to the State \$14 for each in-place cubic meter of concrete represented by the deficient test. If the result of a single compressive strength test at the maximum age specified or allowed is below 95 percent of the specified strength, but is 85 percent or more of the specified strength, the Contractor shall make the corrective changes specified above, and shall pay to the State \$20 for each in place cubic meter of concrete represented by the deficient test. In addition, such corrective changes shall be made when the compressive strength of concrete tested at 7 days indicates, in the judgment of the Engineer, that the concrete will not attain the required compressive strength at the maximum age specified or allowed. Concrete represented by a single test that indicates a compressive strength of less than 85 percent of the specified 28-day compressive strength will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials."
- If the test result indicates that the compressive strength at the maximum curing age specified or allowed is below the specified strength, but is 85 percent or more of the specified strength, payments to the State as required above shall be made, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work meets or exceeds the specified 28-day compressive strength. If the test result indicates a compressive strength at the maximum curing age specified or allowed below 85 percent, the concrete represented by that test will be rejected, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength and quality of the concrete placed in the work are acceptable. If the evidence consists of tests made on cores taken from the work, the cores shall be obtained and tested in conformance with the requirements in ASTM Designation: C 42.
 - No single compressive strength test shall represent more than 250 m³.
- When a precast concrete member is steam cured, the compressive strength of the concrete will be determined from test cylinders that have been handled and stored in conformance with Method 3 of California Test 540. The compressive strength of steam cured concrete will be evaluated on the basis of individual tests representing specific portions of production. When the concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete shall be considered to be acceptable whenever its compressive strength reaches the specified 28-day compressive strength provided that strength is reached in not more than the maximum number of days specified or allowed after the member is cast.
- When concrete is specified by compressive strength, prequalification of materials, mix proportions, mixing equipment, and procedures proposed for use will be required prior to placement of the concrete. Prequalification shall be accomplished by the submission of acceptable certified test data or trial batch reports by the Contractor. Prequalification data shall be based on the use of materials, mix proportions, mixing equipment, procedures, and size of batch proposed for use in the work.
- Certified test data, in order to be acceptable, shall indicate that not less than 90 percent of at least 20 consecutive tests exceed the specified strength at the maximum number of cure days specified or allowed, and none of those tests are less than 95 percent of specified strength. Strength tests included in the data shall be the most recent tests made on concrete of the proposed mix design and all shall have been made within one year of the proposed use of the concrete.

- Trial batch test reports, in order to be acceptable, shall indicate that the average compressive strength of 5 consecutive concrete cylinders, taken from a single batch, at not more than 28 days (or the maximum age allowed) after molding shall be at least 4 MPa greater than the specified 28-day compressive strength, and no individual cylinder shall have a strength less than the specified strength at the maximum age specified or allowed. Data contained in the report shall be from trial batches that were produced within one year of the proposed use of specified strength concrete in the project. Whenever air-entrainment is required, the air content of trial batches shall be equal to or greater than the air content specified for the concrete without reduction due to tolerances.
- Tests shall be performed in conformance with either the appropriate California Test methods or the comparable ASTM test methods. Equipment employed in testing shall be in good condition and shall be properly calibrated. If the tests are performed during the life of the contract, the Engineer shall be notified sufficiently in advance of performing the tests in order to witness the test procedures.
 - The certified test data and trial batch test reports shall include the following information:
 - A. Date of mixing.
 - B. Mixing equipment and procedures used.
 - C. The size of batch in cubic meters and the mass, type, and source of all ingredients used.
 - D. Penetration of the concrete.
 - E. The air content of the concrete if an air-entraining admixture is used.
 - F. The age at time of testing and strength of all concrete cylinders tested.
 - Certified test data and trial batch test reports shall be signed by an official of the firm that performed the tests.
- When approved by the Engineer, concrete from trial batches may be used in the work at locations where concrete of a lower quality is required and the concrete will be paid for as the type or class of concrete required at that location.
- After materials, mix proportions, mixing equipment, and procedures for concrete have been prequalified for use, additional prequalification by testing of trial batches will be required prior to making changes that, in the judgment of the Engineer, could result in a strength of concrete below that specified.
- The Contractor's attention is directed to the time required to test trial batches and the Contractor shall be responsible for production of trial batches at a sufficiently early date so that the progress of the work is not delayed.
- When precast concrete members are manufactured at the plant of an established manufacturer of precast concrete members, the mix proportions of the concrete shall be determined by the Contractor, and a trial batch and prequalification of the materials, mix proportions, mixing equipment, and procedures will not be required.

90-10 MINOR CONCRETE

90-10.01 GENERAL

- Concrete for minor structures, slope paving, curbs, sidewalks and other concrete work, when designated as minor concrete on the plans, in the specifications, or in the contract item, shall conform to the provisions specified herein.
- The Engineer, at the Engineer's discretion, will inspect and test the facilities, materials and methods for producing the concrete to ensure that minor concrete of the quality suitable for use in the work is obtained.

90-10.02 MATERIALS

• Minor concrete shall conform to the following requirements:

90-10.02A Cementitious Material

• Cementitious material shall conform to the provisions in Section 90-1.01, "Description."

90-10.02B Aggregate

- Aggregate shall be clean and free from deleterious coatings, clay balls, roots, and other extraneous materials.
- The Contractor shall submit to the Engineer for approval, a grading of the combined aggregate proposed for use in the minor concrete. After acceptance of the grading, aggregate furnished for minor concrete shall conform to that grading, unless a change is authorized in writing by the Engineer.
- The Engineer may require the Contractor to furnish periodic test reports of the aggregate grading furnished. The maximum size of aggregate used shall be at the option of the Contractor, but in no case shall the maximum size be larger than 37.5 mm or smaller than 19 mm.
- The Engineer may waive, in writing, the gradation requirements in this Section 90-10.02B, if, in the Engineer's opinion, the furnishing of the gradation is not necessary for the type or amount of concrete work to be constructed.

90-10.02C Water

• Water used for washing, mixing, and curing shall be free from oil, salts, and other impurities that would discolor or etch the surface or have an adverse affect on the quality of the concrete.

90-10.02D Admixtures

The use of admixtures shall conform to the provisions in Section 90-4, "Admixtures."

90-10.03 PRODUCTION

- Cementitious material, water, aggregate, and admixtures shall be stored, proportioned, mixed, transported, and discharged in conformance with recognized standards of good practice that will result in concrete that is thoroughly and uniformly mixed, that is suitable for the use intended, and that conforms to requirements specified herein. Recognized standards of good practice are outlined in various industry publications such as are issued by American Concrete Institute, AASHTO, or the Department.
- The cementitious material content of minor concrete shall conform to the provisions in Section 90-1.01, "Description."
- The amount of water used shall result in a consistency of concrete conforming to the provisions in Section 90-6.06, "Amount of Water and Penetration." Additional mixing water shall not be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer.
- Discharge of ready-mixed concrete from the transporting vehicle shall be made while the concrete is still plastic and before stiffening occurs. An elapsed time of 1.5 hours (one hour in non-agitating hauling equipment), or more than 250 revolutions of the drum or blades, after the introduction of the cementitious material to the aggregates, or a temperature of concrete of more than 32°C will be considered conditions contributing to the quick stiffening of concrete. The Contractor shall take whatever action is necessary to eliminate quick stiffening, except that the addition of water will not be permitted.
 - The required mixing time in stationary mixers shall be not less than 50 seconds or more than 5 minutes.
- The minimum required revolutions at mixing speed for transit-mixed concrete shall be not less than that recommended by the mixer manufacturer, and shall be increased, if necessary, to produce thoroughly and uniformly mixed concrete.
- Each load of ready-mixed concrete shall be accompanied by a weighmaster certificate that shall be delivered to the Engineer at the discharge location of the concrete, unless otherwise directed by the Engineer. The weighmaster certificate shall be clearly marked with the date and time of day when the load left the batching plant and, if hauled in truck mixers or agitators, the time the mixing cycle started.
- A Certificate of Compliance conforming to the provisions in Section 6–1.07, "Certificates of Compliance," shall be furnished to the Engineer, prior to placing minor concrete from a source not previously used on the contract, stating that minor concrete to be furnished meets contract requirements, including minimum cementitious material content specified.

90-10.04 CURING MINOR CONCRETE

Curing minor concrete shall conform to the provisions in Section 90-7, "Curing Concrete."

90-10.05 PROTECTING MINOR CONCRETE

• Protecting minor concrete shall conform to the provisions in Section 90-8, "Protecting Concrete," except the concrete shall be maintained at a temperature of not less than 4°C for 72 hours after placing.

90-10.06 MEASUREMENT AND PAYMENT

• Minor concrete will be measured and paid for in conformance with the provisions specified in the various sections of these specifications covering concrete construction when minor concrete is specified in the specifications, shown on the plans, or indicated by contract item in the Engineer's Estimate.

90-11 MEASUREMENT AND PAYMENT

90-11.01 MEASUREMENT

- Portland cement concrete will be measured in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete.
- When it is provided that concrete will be measured at the mixer, the volume in cubic meters shall be computed as the total mass of the batch in kilograms divided by the density of the concrete in kilograms per cubic meter. The total mass of the batch shall be calculated as the sum of all materials, including water, entering the batch. The density of the concrete will be determined in conformance with the requirements in California Test 518.

90-11.02 PAYMENT

- Portland cement concrete will be paid for in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete.
- Full compensation for furnishing and incorporating admixtures required by these specifications or the special provisions will be considered as included in the contract prices paid for the concrete involved and no additional compensation will be allowed therefor.
- Should the Engineer order the Contractor to incorporate any admixtures in the concrete when their use is not required by these specifications or the special provisions, furnishing the admixtures and adding them to the concrete will be paid for as extra work as provided in Section 4-1.03D, "Extra Work."
- Should the Contractor use admixtures in conformance with the provisions in Section 90-4.05, "Optional Use of Chemical Admixtures," or Section 90-4.07, "Optional Use of Air-entraining Admixtures," or should the Contractor request and obtain permission to use other admixtures for the Contractor's benefit, the Contractor shall furnish those admixtures and incorporate them into the concrete at the Contractor's expense and no additional compensation will be allowed therefor.

END OF AMENDMENTS

SECTION 2. PROPOSAL REQUIREMENTS AND CONDITIONS

2-1.01 GENERAL

The bidder's attention is directed to the provisions in Section 2, "Proposal Requirements and Conditions," of the Standard Specifications and these special provisions for the requirements and conditions which the bidder must observe in the preparation of the proposal form and the submission of the bid.

In addition to the subcontractors required to be listed in conformance with Section 2-1.054, "Required Listing of Proposed Subcontractors," of the Standard Specifications, each proposal shall have listed therein the name and address of each DVBE subcontractor to be used for credit in meeting the goal, and to whom the bidder proposes to directly subcontract portions of the work. The list of subcontractors shall also set forth the portion of work that will be performed by each subcontractor listed. A sheet for listing the subcontractors is included in the Proposal.

The Bidder's Bond form mentioned in the last paragraph in Section 2-1.07, "Proposal Guaranty," of the Standard Specifications will be found following the signature page of the Proposal.

In conformance with Public Contract Code Section 7106, a Noncollusion Affidavit is included in the Proposal. Signing the Proposal shall also constitute signature of the Noncollusion Affidavit.

Submit request for substitution of an "or equal" item, and the data substantiating the request to the Department of Transportation, P.O. Box 911, Marysville, CA 95901, Attn: NRCO/Contract Administration Engineer, so that the request is received by the Department by close of business on the fourth day, not including Saturdays, Sundays and legal holidays, following bid opening.

Failure of the bidder to fulfill the requirements of the Special Provisions for submittals required to be furnished after bid opening, including but not limited to DBE or DVBE submittals, or escrowed bid documents, where applicable, may subject the bidder to a determination of the bidder's responsibility in the event it is the apparent low bidder on a future public works contracts.

2-1.02 DISABLED VETERAN BUSINESS ENTERPRISE (DVBE)

Section 10115 of the Public Contract Code requires the Department to implement provisions to establish a goal for Disabled Veteran Business Enterprise (DVBE) in contracts.

It is the policy of the Department that Disabled Veteran Business Enterprise (DVBE) shall have the maximum opportunity to participate in the performance of contracts financed solely with state funds. The Contractor shall ensure that DVBEs have the maximum opportunity to participate in the performance of this contract and shall take all necessary and reasonable steps for this assurance. The Contractor shall not discriminate on the basis of race, color, national origin, or sex in the award and performance of subcontracts. Failure to carry out the requirements of this paragraph shall constitute a breach of contract and may result in termination of this contract or other remedy the Department may deem appropriate.

Bidder's attention is directed to the following:

- A. "Disabled Veteran Business Enterprise" (DVBE) means a business concern certified as a DVBE by the Office of Small Business and Disabled Veteran Business Enterprise Certification, Department of General Services.
- B. A DVBE may participate as a prime contractor, subcontractor, joint venture partner with a prime or subcontractor, or vendor of material or supplies.
- C. Credit for DVBE prime contractors will be 100 percent.

- D. A DVBE joint venture partner must be responsible for specific contract items of work, or portions thereof. Responsibility means actually performing, managing and supervising the work with its own forces. The DVBE joint venture partner must share in the ownership, control, management responsibilities, risks and profits of the joint venture. The DVBE joint venturer must submit the joint venture agreement with the Caltrans Bidder DVBE Information form required in Section 2-1.04, "Submission of DVBE Information," elsewhere in these special provisions.
- E. A DVBE must perform a commercially useful function, i.e., must be responsible for the execution of a distinct element of the work and must carry out its responsibility by actually performing, managing and supervising the work.
- F. Credit for DVBE vendors of materials or supplies is limited to 60 percent of the amount to be paid to the vendor for the material unless the vendor manufactures or substantially alters the goods.
- G. Credit for trucking by DVBEs will be as follows:
 - 1. One hundred percent of the amount to be paid when a DVBE trucker will perform the trucking with his/her own trucks, tractors and employees.
 - 2. Twenty percent of the amount to be paid to DVBE trucking brokers who do not have a "certified roster."
 - 3. One hundred percent of the amount to be paid to DVBE trucking brokers who have signed agreements that all trucking will be performed by DVBE truckers if credit is toward the DVBE goal, a "certified roster" showing that all trucks are owned by DVBEs, and a signed statement on the "certified roster" that indicates that 100 percent of revenue paid by the broker will be paid to the DVBEs listed on the "certified roster."
 - 4. Twenty percent of the amount to be paid to trucking brokers who are not a DVBE but who have signed agreements with DVBE truckers assuring that at least 20 percent of the trucking will be performed by DVBE truckers if credit is toward the DVBE goal, a "certified roster" showing that at least 20 percent of the number of trucks are owned by DVBE truckers, and a signed statement on the "certified roster" that indicates that at least 20 percent of the revenue paid by the broker will be paid to the DVBEs listed on the "certified roster."

The "certified roster" referred to herein shall conform to the requirements in Section 2-1.04, "Submission Of DVBE Information," elsewhere in these special provisions.

- H. DVBEs and DVBE joint venture partners must be certified DVBEs as determined by the Department of General Services, Office of Small Business and Disabled Veteran Business Enterprise Certification, 707 Third Street, West Sacramento, CA 95605, on the date bids for the project are opened before credit may be allowed toward the DVBE goal. It is the Contractor's responsibility to verify that DVBEs are certified.
- I. Noncompliance by the Contractor with these requirements constitutes a breach of this contract and may result in termination of the contract or other appropriate remedy for a breach of this contract.

2-1.03 DVBE GOAL FOR THIS PROJECT

The Department has established the following goal for Disabled Veteran Business Enterprise (DVBE) participation for this project:

Disabled Veteran Business Enterprise (DVBE): 3.0 percent.

It is the bidder's responsibility to make a sufficient portion of the work available to subcontractors and suppliers and to select those portions of the work or material needs consistent with the available DVBE subcontractors and suppliers, so as to assure meeting the goal for DVBE participation.

The Office of Small Business and Disabled Veteran Business Enterprise Certification, Department of General Services, may be contacted at (800) 559-5529 or (916) 375-4940 or visit their internet web site at http://www.pd.dgs.ca.gov/smbus/default.htm for program information and certification status. The Department's Business Enterprise Program may also be contacted through their internet web site at http://www.dot.ca.gov/hq/bep/ or at (866) 810-6346 or (916) 324-1700.

2-1.04 SUBMISSION OF DVBE INFORMATION

The required DVBE information shall be submitted on the "CALTRANS BIDDER - DVBE INFORMATION" form included in the Proposal. If this information is not submitted with the bid, the DVBE information forms shall be removed from the documents prior to submitting the bid.

It is the bidder's responsibility to make enough work available to DVBEs and to select those portions of the work or material needs consistent with the available DVBEs to meet the goal for DVBE participation or to provide information to establish that, prior to bidding, the bidder made adequate good faith efforts to do so.

If the DVBE information is not submitted with the bid, the apparent successful bidder (low bidder), the second low bidder and the third low bidder shall submit the DVBE information to the Department of Transportation, 1120 N Street, Room 0200, MS #26, Sacramento, California 95814 so the information is received by the Department no later than 4:00 p.m. on the fourth day, not including Saturdays, Sundays and legal holidays, following bid opening. DVBE information sent by U.S. Postal Service certified mail with return receipt and certificate of mailing and mailed on or before the third day, not including Saturdays, Sundays and legal holidays, following bid opening will be accepted even if it is received after the fourth day following bid opening. Failure to submit the required DVBE information by the time specified will be grounds for finding the bid or proposal nonresponsive. Other bidders need not submit DVBE information unless requested to do so by the Department.

The bidder's DVBE information shall establish that good faith efforts to meet the DVBE goal have been made. To establish good faith efforts, the bidder shall demonstrate that the goal will be met or that, prior to bidding, adequate good faith efforts to meet the goal were made.

Bidders are cautioned that even though their submittal indicates they will meet the stated DVBE goal, their submittal should also include their adequate good faith efforts information along with their DVBE goal information to protect their eligibility for award of the contract in the event the Department, in its review, finds that the goal has not been met.

The bidder's DVBE information shall include the names of DVBE firms that will participate, with a complete description of work or supplies to be provided by each, the dollar value of each DVBE transaction, and a written confirmation from the DVBE that it is participating in the contract. A copy of the DVBE's quote will serve as written confirmation that the DVBE is participating in the contract. When 100 percent of a contract item of work is not to be performed or furnished by a DVBE, a description of the exact portion of that work to be performed or furnished by that DVBE shall be included in the DVBE information, including the planned location of that work. The work that a DVBE prime contractor has committed to performing with its own forces as well as the work that it has committed to be performed by DVBE subcontractors, suppliers and trucking companies will count toward the goal.

If credit for trucking by a DVBE trucking broker is shown on the bidder's information as 100 percent of the revenue to be paid by the broker is to be paid to DVBE truckers, a "certified roster" of the broker's trucks to be used must be included. The "certified roster" must indicate that all the trucks are owned by certified DVBEs and must show the DVBE truck numbers, owner's name, Public Utilities Commission Cal-T numbers, and the DVBE certification numbers. The roster must indicate that all revenue paid by the broker will be paid to DVBEs listed on the "certified roster".

If credit for trucking by a trucking broker who is not a DVBE is shown in the bidder's information, a "certified roster" of the broker's trucks to be used must be included. The "certified roster" must indicate that at least 20 percent of the broker's trucks are owned by certified DVBEs and must show the DVBE truck numbers, owner's name, Public Utilities Commission Cal-T numbers, and the DVBE certification number. The roster must indicate that at least 20 percent of the revenue paid by the broker will be paid to DVBEs listed on the "certified roster".

A bidder shall be deemed to have made good faith efforts upon submittal, within time limits specified by the Department, of documentary evidence that all of the following actions were taken:

- A. Contact was made with the Office of Small Business and Disabled Veteran Business Enterprise Certification (OSDC), Department of General Services or their web site at http://www.pd.dgs.ca.gov/smbus/default.htm to identify Disabled Veteran Business Enterprises.
- B. Advertising was published in trade media and media focusing on Disabled Veteran Business Enterprises, unless time limits imposed by the Department do not permit that advertising.
- C. Invitations to bid were submitted to potential Disabled Veteran Business Enterprise contractors.
- D. Available Disabled Veteran Business Enterprises were considered.

2-1.05 SMALL BUSINESS PREFERENCE

Attention is directed to "Award and Execution of Contract" of these special provisions.

Attention is also directed to the Small Business Procurement and Contract Act, Government Code Section 14835, et seq and Title 2, California Code of Regulations, Section 1896, et seq.

Bidders who wish to be classified as a Small Business under the provisions of those laws and regulations, shall be certified as Small Business by the Department of General Services, Office of Small Business and Disabled Veteran Business Enterprise Certification, 707 Third Street, West Sacramento, CA 95605.

To request Small Business Preference, bidders shall fill out and sign the Request for Small Business Preference form in the Proposal and shall attach a copy of their Office of Small Business and Disabled Veteran Business Enterprise Certification small business certification letter to the form. The bidder's signature on the Request for Small Business Preference certifies, under penalty of perjury, that the bidder is certified as Small Business at the time of bid opening and further certifies, under penalty of perjury, that under the following conditions, at least 50 percent of the subcontractors to be utilized on the project are either certified Small Business or have applied for Small Business certification by bid opening date and are subsequently granted Small Business certification.

The conditions requiring the aforementioned 50 percent level of subcontracting by Small Business subcontractors apply if:

- A. The lowest responsible bid for the project exceeds \$100,000; and
- B. The project work to be performed requires a Class A or a Class B contractor's license; and
- C. Two or more subcontractors will be used.

If the above conditions apply and Small Business Preference is granted in the award of the contract, the 50 percent Small Business subcontractor utilization level shall be maintained throughout the life of the contract.

2-1.06 CALIFORNIA COMPANY PREFERENCE

Attention is directed to "Award and Execution of Contract" of these special provisions.

In conformance with the requirements of Section 6107 of the Public Contract Code, a "California company" will be granted a reciprocal preference for bid comparison purposes as against a nonresident contractor from any state that gives or requires a preference to be given contractors from that state on its public entity construction contracts.

A "California company" means a sole proprietorship, partnership, joint venture, corporation, or other business entity that was a licensed California contractor on the date when bids for the public contract were opened and meets one of the following:

- A. Has its principal place of business in California.
- B. Has its principal place of business in a state in which there is no local contractor preference on construction contracts.
- C. Has its principal place of business in a state in which there is a local contractor construction preference and the contractor has paid not less than \$5000 in sales or use taxes to California for construction related activity for each of the five years immediately preceding the submission of the bid.

To carry out the "California company" reciprocal preference requirements of Section 6107 of the Public Contract Code, all bidders shall fill out and sign the California Company Preference form in the Proposal. The bidder's signature on the California Company Preference form certifies, under penalty of perjury, that the bidder is or is not a "California company" and if not, the amount of the preference applied by the state of the nonresident Contractor.

A nonresident Contractor shall disclose any and all bid preferences provided to the nonresident Contractor by the state or country in which the nonresident Contractor has its principal place of business.

Proposals without the California Company Preference form filled out and signed may be rejected.

SECTION 3. AWARD AND EXECUTION OF CONTRACT

The bidder's attention is directed to the provisions in Section 3, "Award and Execution of Contract," of the Standard Specifications and these special provisions for the requirements and conditions concerning award and execution of contract.

Bid protests are to be delivered to the following address: Department of Transportation, MS 43, Attn: Office Engineer, 1727 30th Street, Sacramento, CA 95816 or by facsimile to the Office Engineer at (916) 227-6282.

The award of the contract, if it be awarded, will be to the lowest responsible bidder whose proposal complies with all the requirements prescribed and who has met the goal for DVBE participation or has demonstrated, to the satisfaction of the Department, adequate good faith efforts to do so. Meeting the goal for DVBE participation or demonstrating, to the satisfaction of the Department, adequate good faith efforts to do so is a condition for being eligible for award of contract.

The contract shall be executed by the successful bidder and shall be returned, together with the contract bonds, to the Department so that it is received within 10 days, not including Saturdays, Sundays and legal holidays, after the bidder has received the contract for execution. Failure to do so shall be just cause for forfeiture of the proposal guaranty. The executed contract documents shall be delivered to the following address: Department of Transportation MS 43, Attn: Office Engineer, 1727 30th Street, Sacramento, CA 95816.

A "Payee Data Record" form will be included in the contract documents to be executed by the successful bidder. The purpose of the form is to facilitate the collection of taxpayer identification data. The form shall be completed and returned to the Department by the successful bidder with the executed contract and contract bonds. For the purposes of the form, payee shall be deemed to mean the successful bidder. The form is not to be completed for subcontractors or suppliers. Failure to complete and return the "Payee Data Record" form to the Department as provided herein will result in the retention of 20 percent of payments due the contractor and penalties of up to \$20,000. This retention of payments for failure to complete the "Payee Data Record" form is in addition to any other retention of payments due the Contractor.

Attention is also directed to "Small Business Preference" of these special provisions. Any bidder who is certified as a Small Business by the Department of General Services, Office of Small Business and Disabled Veteran Business Enterprise Certification, will be allowed a preference in the award of this contract, if it be awarded, under the following conditions:

- A. The apparent low bidder is not certified as a Small Business, or has not filled out and signed the Request for Small Business Preference included with the bid documents and attached a copy of their Office of Small Business and Disabled Veteran Business Enterprise Certification small business certification letter to the form; and
- B. The bidder filled out and signed the Request for Small Business Preference form included with the bid documents and attached a copy of their Office of Small Business and Disabled Veteran Business Enterprise Certification small business certification letter to the form.

The small business preference will be a reduction in the bid submitted by the small business contractor, for bid comparison purposes, by an amount equal to 5 percent of the amount bid by the apparent low bidder, the amount not to exceed \$50,000. If this reduction results in the small business contractor becoming the low bidder, then the contract will be awarded to the small business contractor on the basis of the actual bid of the small business contractor notwithstanding the reduced bid price used for bid comparison purposes.

Attention is also directed to "California Company Preference" of these special provisions.

The amount of the California company reciprocal preference shall be equal to the amount of the preference applied by the state of the nonresident contractor with the lowest responsive bid, except where the "California company" is eligible for a California Small Business Preference, in which case the preference applied shall be the greater of the two, but not both.

If the bidder submitting the lowest responsive bid is not a "California company" and with the benefit of the reciprocal preference, a "California company's" responsive bid is equal to or less than the original lowest responsive bid, the "California company" will be awarded the contract at its submitted bid price except as provided below.

Small business bidders shall have precedence over nonsmall business bidders in that the application of the "California company" preference for which nonsmall business bidders may be eligible shall not result in the denial of the award to a small business bidder.

SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION AND LIQUIDATED DAMAGES

Attention is directed to the provisions in Section 8-1.03, "Beginning of Work," Section 8-1.06, "Time of Completion," and Section 8-1.07, "Liquidated Damages," of the Standard Specifications and these special provisions.

The Contractor shall begin work within 15 calendar days after the contract has been approved by the Attorney General or the attorney appointed and authorized to represent the Department of Transportation.

This work shall be diligently prosecuted to completion before the expiration of **45 WORKING DAYS** beginning on the fifteenth calendar day after approval of the contract.

The Contractor shall pay to the State of California the sum of \$2200 per day, for each and every calendar day's delay in finishing the work in excess of **45 WORKING DAYS**.

SECTION 5. GENERAL

SECTION 5-1. MISCELLANEOUS

5-1.01 PLANS AND WORKING DRAWINGS

When the specifications require working drawings to be submitted to the Division of Structure Design, the drawings shall be submitted to: Division of Structure Design, Documents Unit, Mail Station 9, 1801 30th Street, Sacramento, CA 95816, Telephone 916 227-8252.

5-1.011 EXAMINATION OF PLANS, SPECIFICATIONS, CONTRACT, AND SITE OF WORK

Attention is directed to "Differing Site Conditions" of these special provisions regarding physical conditions at the site which may differ from those indicated in "Materials Information," log of test borings or other geotechnical information obtained by the Department's investigation of site conditions.

5-1.012 DIFFERING SITE CONDITIONS

Attention is directed to Section 5-1.116, "Differing Site Conditions," of the Standard Specifications.

During the progress of the work, if subsurface or latent conditions are encountered at the site differing materially from those indicated in the "Materials Information," log of test borings, other geotechnical data obtained by the Department's investigation of subsurface conditions, or an examination of the conditions above ground at the site, the party discovering those conditions shall promptly notify the other party in writing of the specific differing conditions before they are disturbed and before the affected work is performed.

The Contractor will be allowed 15 days from the notification of the Engineer's determination of whether or not an adjustment of the contract is warranted, in which to file a notice of potential claim in conformance with the provisions of Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications and as specified herein; otherwise the decision of the Engineer shall be deemed to have been accepted by the Contractor as correct. The notice of potential claim shall set forth in what respects the Contractor's position differs from the Engineer's determination and provide any additional information obtained by the Contractor, including but not limited to additional geotechnical data. The notice of potential claim shall be accompanied by the Contractor's certification that the following were made in preparation of the bid: a review of the contract, a review of the "Materials Information," a review of the log of test borings and other records of geotechnical data to the extent they were made available to bidders prior to the opening of bids, and an examination of the conditions above ground at the site. Supplementary information, obtained by the Contractor subsequent to the filing of the notice of potential claim, shall be submitted to the Engineer in an expeditious manner.

5-1.013 LINES AND GRADES

Attention is directed to Section 5-1.07, "Lines and Grades," of the Standard Specifications.

Stakes or marks will be set by the Engineer in conformance with the requirements in Chapter 12, "Construction Surveys," of the Department's Surveys Manual.

5-1.015 LABORATORY

When a reference is made in the specifications to the "Laboratory," the reference shall mean Division of Engineering Services - Materials Engineering and Testing Services and Division of Engineering Services - Geotechnical Services of the Department of Transportation, or established laboratories of the various Districts of the Department, or other laboratories authorized by the Department to test materials and work involved in the contract. When a reference is made in the specifications to the "Transportation Laboratory," the reference shall mean Division of Engineering Services - Materials Engineering and Testing Services and Division of Engineering Services - Geotechnical Services, located at 5900 Folsom Boulevard, Sacramento, CA 95819, Telephone (916) 227-7000.

5-1.017 CONTRACT BONDS

Attention is directed to Section 3-1.02, "Contract Bonds," of the Standard Specifications and these special provisions.

The payment bond shall be in a sum not less than one hundred percent of the total amount payable by the terms of the contract.

5-1.019 COST REDUCTION INCENTIVE

Attention is directed to Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications.

Prior to preparing a written cost reduction proposal, the Contractor shall request a meeting with the Engineer to discuss the proposal in concept. Items of discussion will also include permit issues, impact on other projects, impact on the project schedule, peer reviews, overall merit of the proposal, and review times required by the Department and other agencies.

If a cost reduction proposal submitted by the Contractor, and subsequently approved by the Engineer, provides for a reduction in contract time, 50 percent of that contract time reduction shall be credited to the State by reducing the contract working days, not including plant establishment. Attention is directed to "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions regarding the working days.

If a cost reduction proposal submitted by the Contractor, and subsequently approved by the Engineer, provides for a reduction in traffic congestion or avoids traffic congestion during construction, 60 percent of the estimated net savings in construction costs attributable to the cost reduction proposal will be paid to the Contractor. In addition to the requirements in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications, the Contractor shall provide detailed comparisons of the traffic handling between the existing contract and the proposed change, and estimates of the traffic volumes and congestion.

5-1.02 LABOR NONDISCRIMINATION

Attention is directed to the following Notice that is required by Chapter 5 of Division 4 of Title 2, California Code of Regulations.

NOTICE OF REQUIREMENT FOR NONDISCRIMINATION PROGRAM

(GOV. CODE, SECTION 12990)

Your attention is called to the "Nondiscrimination Clause", set forth in Section 7-1.01A(4), "Labor Nondiscrimination," of the Standard Specifications, which is applicable to all nonexempt State contracts and subcontracts, and to the "Standard California Nondiscrimination Construction Contract Specifications" set forth therein. The specifications are applicable to all nonexempt State construction contracts and subcontracts of \$5000 or more.

5-1.022 PAYMENT OF WITHHELD FUNDS

Payment of withheld funds shall conform to Section 9-1.065, "Payment of Withheld Funds," of the Standard Specifications and these special provisions.

Funds withheld from progress payments to ensure performance of the contract that are eligible for payment into escrow or to an escrow agent pursuant to Section 10263 of the California Public Contract Code do not include funds withheld or deducted from payment due to failure of the Contractor to fulfill a contract requirement.

5-1.03 INTEREST ON PAYMENTS

Interest shall be payable on progress payments, payments after acceptance, final payments, extra work payments, and claim payments as follows:

- A. Unpaid progress payments, payment after acceptance, and final payments shall begin to accrue interest 30 days after the Engineer prepares the payment estimate.
- B. Unpaid extra work bills shall begin to accrue interest 30 days after preparation of the first pay estimate following receipt of a properly submitted and undisputed extra work bill. To be properly submitted, the bill must be submitted within 7 days of the performance of the extra work and in conformance with the provisions in Section 9-1.03C, "Records," and Section 9-1.06, "Partial Payments," of the Standard Specifications. An undisputed extra work bill not submitted within 7 days of performance of the extra work will begin to accrue interest 30 days after the preparation of the second pay estimate following submittal of the bill.
- C. The rate of interest payable for unpaid progress payments, payments after acceptance, final payments, and extra work payments shall be 10 percent per annum.
- D. The rate of interest payable on a claim, protest or dispute ultimately allowed under this contract shall be 6 percent per annum. Interest shall begin to accrue 61 days after the Contractor submits to the Engineer information in sufficient detail to enable the Engineer to ascertain the basis and amount of said claim, protest or dispute.

The rate of interest payable on any award in arbitration shall be 6 percent per annum if allowed under the provisions of Civil Code Section 3289.

5-1.04 PUBLIC SAFETY

The Contractor shall provide for the safety of traffic and the public in conformance with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications and these special provisions.

The Contractor shall install temporary railing (Type K) between a lane open to public traffic and an excavation, obstacle or storage area when the following conditions exist:

- A. Excavations.—The near edge of the excavation is 3.6 m or less from the edge of the lane, except:
 - 1. Excavations covered with sheet steel or concrete covers of adequate thickness to prevent accidental entry by traffic or the public.
 - 2. Excavations less than 0.3-m deep.
 - 3. Trenches less than 0.3-m wide for irrigation pipe or electrical conduit, or excavations less than 0.3-m in diameter
 - 4. Excavations parallel to the lane for the purpose of pavement widening or reconstruction.
 - 5. Excavations in side slopes, where the slope is steeper than 1:4 (vertical:horizontal).
 - 6. Excavations protected by existing barrier or railing.

- B. Temporarily Unprotected Permanent Obstacles.—The work includes the installation of a fixed obstacle together with a protective system, such as a sign structure together with protective railing, and the Contractor elects to install the obstacle prior to installing the protective system; or the Contractor, for the Contractor's convenience and with permission of the Engineer, removes a portion of an existing protective railing at an obstacle and does not replace such railing complete in place during the same day.
- C. Storage Areas.—Material or equipment is stored within 3.6 m of the lane and the storage is not otherwise prohibited by the provisions of the Standard Specifications and these special provisions.

The approach end of temporary railing (Type K), installed in conformance with the provisions in this section "Public Safety" and in Section 7-1.09, "Public Safety," of the Standard Specifications, shall be offset a minimum of 4.6 m from the edge of the traffic lane open to public traffic. The temporary railing shall be installed on a skew toward the edge of the traffic lane of not more than 0.3-m transversely to 3 m longitudinally with respect to the edge of the traffic lane. If the 4.6-m minimum offset cannot be achieved, the temporary railing shall be installed on the 10 to 1 skew to obtain the maximum available offset between the approach end of the railing and the edge of the traffic lane, and an array of temporary crash cushion modules shall be installed at the approach end of the temporary railing.

Temporary railing (Type K) shall conform to the provisions in Section 12-3.08, "Temporary Railing (Type K)," of the Standard Specifications. Temporary railing (Type K), conforming to the details shown on 1999 Standard Plan T3, may be used. Temporary railing (Type K) fabricated prior to January 1, 1993, and conforming to 1988 Standard Plan B11-30 may be used, provided the fabrication date is printed on the required Certificate of Compliance.

Temporary crash cushion modules shall conform to the provisions in "Temporary Crash Cushion Module" of these special provisions.

Except for installing, maintaining and removing traffic control devices, whenever work is performed or equipment is operated in the following work areas, the Contractor shall close the adjacent traffic lane unless otherwise provided in the Standard Specifications and these special provisions:

Approach Speed of Public Traffic (Posted Limit)	Work Areas
(Kilometers Per Hour)	
Over 72 (45 Miles Per Hour)	Within 1.8 m of a traffic lane but not on a traffic lane
56 to 72 (35 to 45 Miles Per Hour)	Within 0.9-m of a traffic lane but not on a traffic lane

The lane closure provisions of this section shall not apply if the work area is protected by permanent or temporary railing or barrier.

When traffic cones or delineators are used to delineate a temporary edge of a traffic lane, the line of cones or delineators shall be considered to be the edge of the traffic lane, however, the Contractor shall not reduce the width of an existing lane to less than 3 m without written approval from the Engineer.

When work is not in progress on a trench or other excavation that required closure of an adjacent lane, the traffic cones or portable delineators used for the lane closure shall be placed off of and adjacent to the edge of the traveled way. The spacing of the cones or delineators shall be not more than the spacing used for the lane closure.

Suspended loads or equipment shall not be moved nor positioned over public traffic or pedestrians.

Full compensation for conforming to the provisions in this section "Public Safety," including furnishing and installing temporary railing (Type K) and temporary crash cushion modules, shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor.

5-1.05 TESTING

Testing of materials and work shall conform to the provisions in Section 6-3, "Testing," of the Standard Specifications and these special provisions.

Whenever the provisions of Section 6-3.01, "General," of the Standard Specifications refer to tests or testing, it shall mean tests to assure the quality and to determine the acceptability of the materials and work.

The Engineer will deduct the costs for testing of materials and work found to be unacceptable, as determined by the tests performed by the Department, and the costs for testing of material sources identified by the Contractor which are not used for the work, from moneys due or to become due to the Contractor. The amount deducted will be determined by the Engineer.

5-1.06 REMOVAL OF ASBESTOS AND HAZARDOUS SUBSTANCES

When the presence of asbestos or hazardous substances are not shown on the plans or indicated in the specifications and the Contractor encounters materials which the Contractor reasonably believes to be asbestos or a hazardous substance as defined in Section 25914.1 of the Health and Safety Code, and the asbestos or hazardous substance has not been rendered harmless, the Contractor may continue work in unaffected areas reasonably believed to be safe. The Contractor shall immediately cease work in the affected area and report the condition to the Engineer in writing.

In conformance with Section 25914.1 of the Health and Safety Code, removal of asbestos or hazardous substances including exploratory work to identify and determine the extent of the asbestos or hazardous substance will be performed by separate contract.

If delay of work in the area delays the current controlling operation, the delay will be considered a right of way delay and the Contractor will be compensated for the delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

5-1.07 YEAR 2000 COMPLIANCE

This contract is subject to Year 2000 Compliance for automated devices in the State of California.

Year 2000 compliance for automated devices in the State of California is achieved when embedded functions have or create no logical or mathematical inconsistencies when dealing with dates prior to and beyond 1999. The year 2000 is recognized and processed as a leap year. The product shall operate accurately in the manner in which the product was intended for date operation without requiring manual intervention.

The Contractor shall provide the Engineer a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for all automated devices furnished for the project.

5-1.08 SUBCONTRACTOR AND DVBE RECORDS

The Contractor shall maintain records of all subcontracts entered into with certified DVBE subcontractors and records of materials purchased from certified DVBE suppliers. The records shall show the name and business address of each DVBE subcontractor or vendor and the total dollar amount actually paid each DVBE subcontractor or vendor.

Upon completion of the contract, a summary of these records shall be prepared on Form CEM-2402 (S) and certified correct by the Contractor or the Contractor's authorized representative, and shall be furnished to the Engineer.

5-1.086 PERFORMANCE OF DVBE SUBCONTRACTORS AND SUPPLIERS

The DVBEs listed by the Contractor in response to the provisions in Section 2-1.04, "Submission of DVBE Information," and Section 3, "Award and Execution of Contract," of these special provisions, which are determined by the Department to be certified DVBEs, shall perform the work and supply the materials for which they are listed, unless the Contractor has received prior written authorization to perform the work with other forces or to obtain the materials from other sources.

Authorization to utilize other forces or sources of materials may be requested for the following reasons:

- A. The listed DVBE, after having had a reasonable opportunity to do so, fails or refuses to execute a written contract, when the written contract, based upon the general terms, conditions, plans and specifications for the project, or on the terms of the subcontractor's or supplier's written bid, is presented by the Contractor.
- B. The listed DVBE becomes bankrupt or insolvent.
- C. The listed DVBE fails or refuses to perform the subcontract or furnish the listed materials.
- D. The Contractor stipulated that a bond was a condition of executing a subcontract and the listed DVBE subcontractor fails or refuses to meet the bond requirements of the Contractor.
- E. The work performed by the listed subcontractor is substantially unsatisfactory and is not in substantial conformance with the plans and specifications or the subcontractor is substantially delaying or disrupting the progress of the work.
- F. The listed DVBE subcontractor is not licensed pursuant to the Contractor's License Law.
- G. It would be in the best interest of the State.

The Contractor shall not be entitled to payment for the work or material unless it is performed or supplied by the listed DVBE or by other forces (including those of the Contractor) pursuant to prior written authorization of the Engineer.

5-1.09 SUBCONTRACTING

Attention is directed to the provisions in Section 8-1.01, "Subcontracting," of the Standard Specifications, Section 2, "Proposal Requirements and Conditions," Section 2-1.04, "Submission of DVBE Information," and Section 3, "Award and Execution of Contract," of these special provisions and these special provisions.

Pursuant to the provisions in Section 1777.1 of the Labor Code, the Labor Commissioner publishes and distributes a list of contractors ineligible to perform work as a subcontractor on a public works project. This list of debarred contractors is available from the Department of Industrial Relations web site at:

http://www.dir.ca.gov/DLSE/Debar.html.

The DVBE information furnished under Section 2-1.04, "Submission of DVBE Information," of these special provisions is in addition to the subcontractor information required to be furnished in Section 8-1.01, "Subcontracting," and Section 2-1.054, "Required Listing of Proposed Subcontractors," of the Standard Specifications.

Section 10115 of the Public Contract Code requires the Department to implement provisions to establish a goal for Disabled Veteran Business Enterprise (DVBE) participation in highway contracts that are State funded. As a part of this requirement:

- A. No substitution of a DVBE subcontractor shall be made at any time without the written consent of the Department,
- B. If a DVBE subcontractor is unable to perform successfully and is to be replaced, the Contractor shall make good faith efforts to replace the original DVBE subcontractor with another DVBE subcontractor.

The provisions in Section 2-1.02, "Disabled Veteran Business Enterprise (DVBE)," of these special provisions that DVBEs shall be certified on the date bids are opened does not apply to DVBE substitutions after award of the contract.

5-1.10 PROMPT PROGRESS PAYMENT TO SUBCONTRACTORS

Attention is directed to the provisions in Sections 10262 and 10262.5 of the Public Contract Code concerning prompt payment to subcontractors.

5-1.103 RECORDS

The Contractor shall maintain cost accounting records for the contract pertaining to, and in such a manner as to provide a clear distinction between, the following six categories of costs of work during the life of the contract:

- A. Direct costs of contract item work.
- B. Direct costs of changes in character in conformance with Section 4-1.03C, "Changes in Character of Work," of the Standard Specifications.
- C. Direct costs of extra work in conformance with Section 4-1.03D, "Extra Work," of the Standard Specifications.
- D. Direct costs of work not required by the contract and performed for others.
- E. Direct costs of work performed under a notice of potential claim in conformance with the provisions in Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications.
- F. Indirect costs of overhead.

Cost accounting records shall include the information specified for daily extra work reports in Section 9-1.03C, "Records," of the Standard Specifications. The requirements for furnishing the Engineer completed daily extra work reports shall only apply to work paid for on a force account basis.

The cost accounting records for the contract shall be maintained separately from other contracts, during the life of the contract, and for a period of not less than 3 years after the date of acceptance of the contract. If the Contractor intends to file claims against the Department, the Contractor shall keep the cost accounting records specified above until complete resolution of all claims has been reached.

5-1.11 AREAS FOR CONTRACTOR'S USE

Attention is directed to the provisions in Section 7-1.19, "Rights in Land and Improvements," of the Standard Specifications and these special provisions.

The highway right of way shall be used only for purposes that are necessary to perform the required work. The Contractor shall not occupy the right of way, or allow others to occupy the right of way, for purposes which are not necessary to perform the required work.

No State-owned parcels adjacent to the right of way are available for the exclusive use of the Contractor within the contract limits. The Contractor shall secure, at the Contractor's own expense, areas required for plant sites, storage of equipment or materials, or for other purposes.

No area is available within the contract limits for the exclusive use of the Contractor. However, temporary storage of equipment and materials on State property may be arranged with the Engineer, subject to the prior demands of State maintenance forces and to other contract requirements. Use of the Contractor's work areas and other State-owned property shall be at the Contractor's own risk, and the State shall not be held liable for damage to or loss of materials or equipment located within such areas.

5-1.12 PAYMENTS

Attention is directed to Sections 9-1.06, "Partial Payments," and 9-1.07, "Payment After Acceptance," of the Standard Specifications and these special provisions.

For the purpose of making partial payments pursuant to Section 9-1.06, "Partial Payments," of the Standard Specifications, the amount set forth for the contract items of work hereinafter listed shall be deemed to be the maximum value of the contract item of work which will be recognized for progress payment purposes:

A. Prepare Water Pollution Control Program \$4,000.00

No partial payment will be made for any materials on hand which are furnished but not incorporated in the work.

5-1.13 MATERIAL WITH NATURALLY OCCURRING ASBESTOS

Attention is directed to "Naturally-Occuring Asbestos Soils Plan and Monitoring" elsewhere in these special provisions.

AIR QUALITY MONITORING

The Contractor shall monitor air quality in conformance with the Health and Safety Plan in "Asbestos soils and Monitoring" elsewhere in these special provisions. Results of air quality tests shall immediately be made available to the Engineer.

DISPOSAL

All surplus excavated material on the project shall become the property of the Contractor and shall be disposed of in conformance with this special provision.

No excavated material with naturally occurring asbestos shall be used for surfacing applications, as defined by the Air Resources Control Board Airborne Toxic Control Measure for Surfacing Applications (ARB Rule). Excess excavated material shown by the Contractor's testing to have less than 0.25% naturally occurring asbestos by volume as defined by the ARB Rule may be disposed of in conformance with Section 7-1.13, "Disposal Of Material Outside The Highway Right Of Way," of the Standard Specifications.

Prior to testing naturally occurring asbestos containing materials, the Contractor shall submit to the Engineer his sampling and analysis procedure and the name of the laboratory which will be used to perform tests a minimum of five working days prior to beginning any sampling or analysis. The Contractor shall use a laboratory certified by the California Department of Health Services. Characterization of the material shall be based on guidelines in USEPA, SW 846, "Test Methods for Evaluating Solid Waste, Volume II: Field Manual Physical/Chemical, Chapter Nine, Section 9.1", and ARB Rule.

The Contractor shall provide access for the Engineer or the Engineer's representative to the disposal site or sites at all times to confirm that the requirements of the ARB Rule are met. Naturally occurring asbestos containing material found to be on surfaces in violation of the ARB Rule shall be immediately mitigated by removal, or covered with a minimum of 0.3 meter of material containing less than 0.25% by volume of naturally occurring asbestos, or other methods as directed by the Engineer.

At the completion of disposal operations the Contractor shall cover any area at the disposal site or sites having less than a 20% slope with 0.3 meter of material containing less than 0.25% by volume of naturally occurring asbestos, unless soil tests performed by the Contractor prove that such surfaces comply with the ARB rule.

The Contractor shall conduct any further investigation deemed necessary by the owner of the property accepting the asbestos-containing material and non-asbestos containing material. This investigation shall be at the Contractor's expense.

The written authorization from the property owner for disposal shall include an acknowledgement that the material contains naturally occurring asbestos, and shall state the levels of asbestos reported from testing. The Contractor shall also provide to the property owner the following written statement:

"WARNING!

This material may contain asbestos.

It is unlawful to use this material for surfacing or any application in which it would remain exposed and subject to possible disturbances.

Extreme care should be taken when handling this material to minimize the generation of dust."

The Contractor shall supply receipts for material to the property owner per ARB Rule. Copies of the receipts shall be provided to the Engineer weekly.

PAYMENT

Full compensation for complying with the requirements of this section shall be considered as included in the contract prices paid for the various items of work and no additional compensation will be allowed therefor.

SECTION 6. (BLANK)

SECTION 7. (BLANK)

SECTION 8. MATERIALS

SECTION 8-1. MISCELLANEOUS

8-1.01 SUBSTITUTION OF NON-METRIC MATERIALS AND PRODUCTS

Only materials and products conforming to the requirements of the specifications shall be incorporated in the work. When metric materials and products are not available, and when approved by the Engineer, and at no cost to the State, materials and products in the United States Standard Measures which are of equal quality and of the required properties and characteristics for the purpose intended, may be substituted for the equivalent metric materials and products, subject to the following provisions:

- A. Materials and products shown on the plans or in the special provisions as being equivalent may be substituted for the metric materials and products specified or detailed on the plans.
- B. Before other non-metric materials and products will be considered for use, the Contractor shall furnish, at the Contractor's expense, evidence satisfactory to the Engineer that the materials and products proposed for use are equal to or better than the materials and products specified or detailed on the plans. The burden of proof as to the quality and suitability of substitutions shall be upon the Contractor and the Contractor shall furnish necessary information as required by the Engineer. The Engineer will be the sole judge as to the quality and suitability of the substituted materials and products and the Engineer's decision will be final.
- C. When the Contractor elects to substitute non-metric materials and products, including materials and products shown on the plans or in the special provisions as being equivalent, the list of sources of material specified in Section 6-1.01, "Source of Supply and Quality of Materials," of the Standard Specification shall include a list of substitutions to be made and contract items involved. In addition, for a change in design or details, the Contractor shall submit plans and working drawings in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The plans and working drawings shall be submitted at least 7 days before the Contractor intends to begin the work involved.

Unless otherwise specified, the following substitutions of materials and products will be allowed:

SUBSTITUTION TABLE FOR PLAIN WIRE REINFORCEMENT

ASTM Designation: A 82

METRIC SIZE SHOWN ON THE PLANS	SIZE TO BE SUBSTITUTED		
mm ²	inch ² x 100		
MW9	W1.4		
MW10	W1.6		
MW13	W2.0		
MW15	W2.3		
MW19	W2.9		
MW20	W3.1		
MW22	W3.5		
MW25	W3.9, except W3.5 in piles only		
MW26	W4.0		
MW30	W4.7		
MW32	W5.0		
MW35	W5.4		
MW40	W6.2		
MW45	W6.5		
MW50	W7.8		
MW55	W8.5, except W8.0 in piles only		
MW60	W9.3		
MW70	W10.9, except W11.0 in piles only		
MW80	W12.4		
MW90	W14.0		
MW100	W15.5		

SUBSTITUTION TABLE FOR BAR REINFORCEMENT

METRIC BAR DESIGNATION NUMBER ¹ SHOWN ON THE PLANS	BAR DESIGNATION NUMBER ² TO BE SUBSTITUTED			
10	3			
13	4			
16	5			
19	6			
22	7			
25	8			
29	9			
32	10			
36	11			
43	14			
57	18			

¹Bar designation numbers approximate the number of millimeters of the nominal diameter of the

No adjustment will be required in spacing or total number of reinforcing bars due to a difference in minimum yield strength between metric and non-metric bars.

²Bar numbers are based on the number of eighths of an inch included in the nominal diameter of the bars

SUBSTITUTION TABLE FOR SIZES OF:

(1) STEEL FASTENERS FOR GENERAL APPLICATIONS (ASTM Designation: A 307 or AASHTO Designation: M 314, Grade 36 or 55), and (2) HIGH STRENGTH STEEL FASTENERS (ASTM Designation: A 325 or A 449)

METRIC SIZE SHOWN ON THE PLANS SIZE TO BE SUBSTITUTE			
mm	inch		
6 or 6.35	1/4		
8 or 7.94	5/16		
10 or 9.52	3/8		
11 or 11.11	7/16		
13, 12.70, or M12	1/2		
14 or 14.29	9/16		
16, 15.88, or M16	5/8		
19, 19.05, or M20	3/4		
22, 22.22, or M22	7/8		
24, 25, 25.40, or M24	1		
29, 28.58, or M27	1-1/8		
32, 31.75, or M30	1-1/4		
35 or 34.93	1-3/8		
38, 38.10, or M36	1-1/2		
44 or 44.45	1-3/4		
51 or 50.80	2		
57 or 57.15	2-1/4		
64 or 63.50	2-1/2		
70 or 69.85	2-3/4		
76 or 76.20	3		
83 or 82.55	3-1/4		
89 or 88.90	3-1/2		
95 or 95.25	3-3/4		
102 or 101.60	4		

SUBSTITUTION TABLE FOR NOMINAL THICKNESS OF SHEET METAL

SUBSTITUTION TABLE FOR NOMINAL TRICKNESS OF SHEET METAL				
UNCOATED HOT AND COLD ROLLED SHEETS				
		(GALVANIZED)		
METRIC THICKNESS	GAGE TO BE	METRIC THICKNESS	GAGE TO BE	
SHOWN ON THE PLANS	SUBSTITUTED	SHOWN ON THE PLANS	SUBSTITUTED	
mm	inch	mm	inch	
7.94	0.3125	4.270	0.1681	
6.07	0.2391	3.891	0.1532	
5.69	0.2242	3.510	0.1382	
5.31	0.2092	3.132	0.1233	
4.94	0.1943	2.753	0.1084	
4.55	0.1793	2.372	0.0934	
4.18	0.1644	1.994	0.0785	
3.80	0.1495	1.803	0.0710	
3.42	0.1345	1.613	0.0635	
3.04	0.1196	1.461	0.0575	
2.66	0.1046	1.311	0.0516	
2.28	0.0897	1.158	0.0456	
1.90	0.0747	1.006 or 1.016	0.0396	
1.71	0.0673	0.930	0.0366	
1.52	0.0598	0.853 0.0336		
1.37	0.0538	0.777 0.0306		
1.21	0.0478	0.701	0.0276	
1.06	0.0418	0.627	0.0247	
0.91	0.0359	0.551	0.0217	
0.84	0.0329	0.513	0.0202	
0.76	0.0299	0.475 0.0187		
0.68	0.0269			
0.61	0.0239			
0.53	0.0209			
0.45	0.0179			
0.42	0.0164			
0.38	0.0149			

SUBSTITUTION TABLE FOR WIRE

METRIC THICKNESS	WIRE THICKNESS	
		G + GE 110
SHOWN ON THE PLANS	TO BE SUBSTITUTED	GAGE NO.
mm	inch	
6.20	0.244	3
5.72	0.225	4
5.26	0.207	5
4.88	0.192	6
4.50	0.177	7
4.11	0.162	8
3.76	0.148	9
3.43	0.135	10
3.05	0.120	11
2.69	0.106	12
2.34	0.092	13
2.03	0.080	14
1.83	0.072	15
1.57	0.062	16
1.37	0.054	17
1.22	0.048	18
1.04	0.041	19
0.89	0.035	20

SUBSTITUTION TABLE FOR PIPE PILES

METRIC SIZE	SIZE		
SHOWN ON THE PLANS	TO BE SUBSTITUTED		
mm x mm	inch x inch		
PP 360 x 4.55	NPS 14 x 0.179		
PP 360 x 6.35	NPS 14 x 0.250		
PP 360 x 9.53	NPS 14 x 0.375		
PP 360 x 11.12	NPS 14 x 0.438		
PP 406 x 12.70	NPS 16 x 0.500		
PP 460 x T	NPS 18 x T"		
PP 508 x T	NPS 20 x T"		
PP 559 x T	NPS 22 x T"		
PP 610 x T	NPS 24 x T"		
PP 660 x T	NPS 26 x T"		
PP 711 x T	NPS 28 x T"		
PP 762 x T	NPS 30 x T"		
PP 813 x T	NPS 32 x T"		
PP 864 x T	NPS 34 x T"		
PP 914 x T	NPS 36 x T"		
PP 965 x T	NPS 38 x T"		
PP 1016 x T	NPS 40 x T"		
PP 1067 x T	NPS 42 x T"		
PP 1118 x T	NPS 44 x T"		
PP 1219 x T	NPS 48 x T"		
PP 1524 x T	NPS 60 x T"		
The thickness is willimstone (T) represents an exact convenien			

The thickness in millimeters (T) represents an exact conversion of the thickness in inches (T").

SUBSTITUTION TABLE FOR CIDH CONCRETE PILING

OK CIDII CONCRETE I ILINO
ACTUAL AUGER SIZE
TO BE SUBSTITUTED
inches
14
16
18
24
30
36
42
48
60
72
84
96
108
120
132
144
156

SUBSTITUTION TABLE FOR STRUCTURAL TIMBER AND LUMBER

METRIC MINIMUM	METRIC MINIMUM	NOMINAL
DRESSED DRY,	DRESSED GREEN,	SIZE
SHOWN ON THE PLANS	SHOWN ON THE PLANS	TO BE SUBSTITUTED
mm x mm	mm x mm	inch x inch
19x89	20x90	1x4
38x89	40x90	2x4
64x89	65x90	3x4
89x89	90x90	4x4
140x140	143x143	6x6
140x184	143x190	6x8
184x184	190x190	8x8
235x235	241x241	10x10
286x286	292x292	12x12

SUBSTITUTION TABLE FOR NAILS AND SPIKES

METRIC COMMON NAIL,	METRIC SPIKE,	SIZE	
SHOWN ON THE PLANS	METRIC BOX NAIL, SHOWN ON THE PLANS	SHOWN ON THE	TO BE
		PLANS	SUBSTITUTED
Length, mm	Length, mm	Length, mm	Penny-weight
Diameter, mm	Diameter, mm	Diameter, mm	
50.80	50.80		6d
2.87	2.51		
63.50	63.50		8d
3.33	2.87		
76.20	76.20	76.20	10d
3.76	3.25	4.88	
82.55	82.55	82.55	12d
3.76	3.25	4.88	
88.90	88.90	88.90	16d
4.11	3.43	5.26	
101.60	101.60	101.60	20d
4.88	3.76	5.72	
114.30	114.30	114.30	30d
5.26	3.76	6.20	
127.00	127.00	127.00	40d
5.72	4.11	6.68	
		139.70	50d
		7.19	
		152.40	60d
		7.19	

SUBSTITUTION TABLE FOR IRRIGATION COMPONENTS

INEINIS
NOMINAL
SIZE
TO BE SUBSTITUTED
inch
1/2
3/4
1
1-1/4
1-1/2
2
2-1/2
3
4
6
8
10
12
14
16

Unless otherwise specified, substitutions of United States Standard Measures standard structural shapes corresponding to the metric designations shown on the plans and in conformance with the requirements in ASTM Designation: A 6/A 6M, Annex 2, will be allowed.

8-1.02 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS

The Department maintains the following list of Prequalified and Tested Signing and Delineation Materials. The Engineer shall not be precluded from sampling and testing products on the list of Prequalified and Tested Signing and Delineation Materials.

The manufacturer of products on the list of Prequalified and Tested Signing and Delineation Materials shall furnish the Engineer a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each type of traffic product supplied.

For those categories of materials included on the list of Prequalified and Tested Signing and Delineation Materials, only those products shown within the listing may be used in the work. Other categories of products, not included on the list of Prequalified and Tested Signing and Delineation Materials, may be used in the work provided they conform to the requirements of the Standard Specifications.

Materials and products may be added to the list of Prequalified and Tested Signing and Delineation Materials if the manufacturer submits a New Product Information Form to the New Product Coordinator at the Transportation Laboratory. Upon a Departmental request for samples, sufficient samples shall be submitted to permit performance of required tests. Approval of materials or products will depend upon compliance with the specifications and tests the Department may elect to perform.

PAVEMENT MARKERS, PERMANENT TYPE

Retroreflective With Abrasion Resistant Surface (ARS)

- A. Apex, Model 921AR (100 mm x 100 mm)
- B. Avery Dennison, Models C88 (100 mm x 100 mm), 911 (100 mm x 100 mm) and 953 (70 mm x 114 mm)
- C. Ray-O-Lite, Model "AA" ARS (100 mm x 100 mm)
- D. 3M Series 290 (89 mm x 100 mm)
- E. 3M Series 290 PSA, with pressure sensitive adhesive pad (89 mm x 100 mm)

Retroreflective With Abrasion Resistant Surface (ARS)

(for recessed applications only)

- A. Avery Dennison, Model 948 (58 mm x 119 mm)
- B. Avery Dennison, Model 944SB (51 mm x 100 mm)*
- C. Ray-O-Lite, Model 2002 (58 mm x 117 mm)
- D. Ray-O-Lite, Model 2004 ARS (51 mm x 100 mm)*

 *For use only in 114 mm wide (older) recessed slots

Non-Reflective, 100 mm Round

- A. Apex Universal (Ceramic)
- B. Apex Universal, Models 929 (ABS) and 929PP (Polypropylene)
- C. Glowlite, Inc., (Ceramic)
- D. Hi-Way Safety, Inc., Models P20-2000W and 2001Y (ABS)
- E. Interstate Sales, "Diamond Back" (ABS) and (Polypropylene)
- F. Novabrite Models Cdot (White) Cdot-y (Yellow), Ceramic
- G. Novabrite Models Pdot-w (White) Pdot-y (Yellow), Polypropylene
- H. Road Creations, Model RCB4NR (Acrylic)
- I. Three D Traffic Works TD10000 (ABS), TD10500 (Polypropylene)

PAVEMENT MARKERS, TEMPORARY TYPE

Temporary Markers For Long Term Day/Night Use (6 months or less)

A. Vega Molded Products "Temporary Road Marker" (75 mm x 100 mm)

Temporary Markers For Short Term Day/Night Use (14 days or less)

(For seal coat or chip seal applications, clear protective covers are required)

- A. Apex Universal, Model 932
- B. Bunzl Extrusion, Models T.O.M., T.R.P.M., and "HH" (High Heat)
- C. Hi-Way Safety, Inc., Model 1280/1281
- D. Glowlite, Inc., Model 932

STRIPING AND PAVEMENT MARKING MATERIAL

Permanent Traffic Striping and Pavement Marking Tape

- A. Advanced Traffic Marking, Series 300 and 400
- B. Brite-Line, Series 1000
- C. Brite-Line, "DeltaLine XRP"
- D. Swarco Industries, "Director 35" (For transverse application only)
- E. Swarco Industries, "Director 60"
- F. 3M, "Stamark" Series 380 and 5730
- G. 3M, "Stamark" Series 420 (For transverse application only)

Temporary (Removable) Striping and Pavement Marking Tape (6 months or less)

- A. Advanced Traffic Marking, Series 200
- B. Brite-Line, Series 100
- C. Garlock Rubber Technologies, Series 2000
- D. P.B. Laminations, Aztec, Grade 102
- E. Swarco Industries, "Director-2"
- F. Trelleborg Industri, R140 Series
- G. 3M, Series 620 "CR", and Series A750
- H. 3M, Series A145, Removable Black Line Mask

- (Black Tape: for use only on Asphalt Concrete Surfaces)
- I. Advanced Traffic Marking Black "Hide-A-Line"

(Black Tape: for use only on Asphalt Concrete Surfaces)

- J. Brite-Line "BTR" Black Removable Tape
 - (Black Tape: for use only on Asphalt Concrete Surfaces)
- K. Trelleborg Industri, RB-140

(Black Tape: for use only on Asphalt Concrete Surfaces)

Preformed Thermoplastic (Heated in place)

- A. Avery Dennison, "Hotape"
- B. Flint Trading, "Premark," "Premark 20/20 Flex," and "Premark 20/20 Flex Plus"

Ceramic Surfacing Laminate, 150 mm x 150 mm

A. Highway Ceramics, Inc.

CLASS 1 DELINEATORS

One Piece Driveable Flexible Type, 1700 mm

- A. Bunzl Extrusion, "Flexi-Guide Models 400 and 566"
- B. Carsonite, Curve-Flex CFRM-400
- C. Carsonite, Roadmarker CRM-375
- D. FlexStake, Model 654 TM
- E. GreenLine Models HWD1-66 and CGD1-66

Special Use Type, 1700 mm

- A. Bunzl Extrusion, Model FG 560 (with 450 mm U-Channel base)
- B. Carsonite, "Survivor" (with 450 mm U-Channel base)
- C. Carsonite, Roadmarker CRM-375 (with 450 mm U-Channel base)
- D. FlexStake, Model 604
- E. GreenLine Models HWDU and CGD (with 450 mm U-Channel base)
- F. Impact Recovery Model D36, with #105 Driveable Base
- G. Safe-Hit with 200 mm pavement anchor (SH248-GP1)
- H. Safe-Hit with 380 mm soil anchor (SH248-GP2) and with 450 mm soil anchor (SH248-GP3)

Surface Mount Type, 1200 mm

- A. Bent Manufacturing Company, Masterflex Model MF-180EX-48
- B. Carsonite, "Super Duck II"
- C. FlexStake, Surface Mount, Models 704 and 754 TM
- D. Impact Recovery Model D48, with #101 Fixed (Surface-Mount) Base
- E. Three D Traffic Works "Channelflex" ID No. 522248W

CHANNELIZERS

Surface Mount Type, 900 mm

- A. Bent Manufacturing Company, Masterflex Models MF-360-36 (Round) and MF-180-36 (Flat)
- B. Bunzl Extrusion, Flexi-Guide Models FG300PE and FG300UR
- C. Carsonite, "Super Duck" (Flat SDF-436, Round SDR-336)
- D. Carsonite, "Super Duck II" Model SDCF203601MB "The Channelizer"
- E. FlexStake, Surface Mount, Models 703 and 753 TM
- F. GreenLine, Model SMD-36
- G. Hi-Way Safety, Inc. "Channel Guide Channelizer" Model CGC36
- H. Impact Recovery Model D36, with #101 Fixed (Surface-Mount) Base
- I. Repo, Models 300 and 400
- J. Safe-Hit, Guide Post, Model SH236SMA
- K. Three D Traffic Works "Channelflex" ID No. 522053W

Lane Separation System

- A. Bunzl "Flexi-Guide (FG) 300 Curb System"
- B. Qwick Kurb, "Klemmfix Guide System"
- C. Recycled Technology, Inc. "Safe-Lane System"

CONICAL DELINEATORS, 1070 mm

(For 700 mm Traffic Cones, see Standard Specifications)

- A. Bent Manufacturing Company "T-Top"
- B. Plastic Safety Systems "Navigator-42"
- C. Radiator Specialty Company "Enforcer"
- D. Roadmaker Company "Stacker"
- E. TrafFix Devices "Grabber"
- F. Three D Traffic Works "Ringtop" TD7000, ID No. 742143

OBJECT MARKERS

Type "K", 450 mm

- A. Bunzl, Model FG318PE
- B. Carsonite, Model SMD 615
- C. FlexStake, Model 701 KM
- D. Repo, Models 300 and 400
- E. Safe-Hit, Model SH718SMA

Type "K-4" / "Q" Object Markers, 600 mm

- A. Bent Manufacturing "Masterflex" Model MF-360-24
- B. Bunzl Extrusion, Model FG324PE
- C. Carsonite, Super Duck II
- D. FlexStake, Model 701KM
- E. Repo, Models 300 and 400
- F. Safe-Hit, Models SH8 24SMA_WA and SH8 24GP3_WA
- G. The Line Connection, Model DP21-4Q
- H. Three D Traffic Works "Q" Marker, ID No. 531702W

CONCRETE BARRIER MARKERS AND TEMPORARY RAILING (TYPE K) REFLECTORS

Impactable Type

- A. ARTUK, "FB"
- B. Bunzl Extrusion, Models PCBM-12 and PCBM-T12
- C. Duraflex Corp., "Flexx 2020" and "Electriflexx"
- D. Hi-Way Safety, Inc., Model GMKRM100
- E. Plastic Safety Systems "BAM" Models OM-BARR and OM-BWAR
- F. Sun-Lab Technology, "Safety Guide Light Model TM-5"
- G. Three D Traffic Works "Roadguide" 9304 Series, ID No. 903176 (One-Way), ID No. 903215 (Two-Way)

Non-Impactable Type

- A. ARTUK, JD Series
- B. Plastic Safety Systems "BAM" Models OM-BITARW and OM-BITARA
- C. Vega Molded Products, Models GBM and JD

METAL BEAM GUARD RAIL POST MARKERS

(For use to the left of traffic)

- A. Bunzl Extrusion, "Mini" (75 mm x 254 mm)
- B. Creative Building Products, "Dura-Bull, Model 11201"
- C. Duraflex Corp., "Railrider"

CONCRETE BARRIER DELINEATORS, 400 mm

(For use to the right of traffic)

- A. Bunzl Extrusion, Model PCBM T-16
- B. Safe-Hit, Model SH216RBM
- C. Sun-Lab Technology, "Safety Guide Light, Model TM16," (75 mm x 300 mm)
- D. Three D Traffic Works "Roadguide" ID No. 904364 (White), ID No. 904390 (Yellow)

CONCRETE BARRIER-MOUNTED MINI-DRUM (260 mm x 360 mm x 570 mm)

A. Stinson Equipment Company "SaddleMarker"

SOUND WALL DELINEATOR

(Applied vertically. Place top of 75 mm x 300 mm reflective element at 1200 mm above roadway)

- A. Bunzl Extrusion, PCBM S-36
- B. Sun-Lab Technology, "Safety Guide Light, Model SM12," (75 mm x 300 mm)

GUARD RAILING DELINEATOR

(Place top of reflective element at 1200 mm above plane of roadway)

Wood Post Type, 686 mm

- A. Bunzl Extrusion, FG 427 and FG 527
- B. Carsonite, Model 427
- C. FlexStake. Model 102 GR
- D. GreenLine GRD 27
- E. Safe-Hit. Model SH227GRD
- F. Three D Traffic Works "Guardflex" TD9100 Series, ID No. 510476

Steel Post Type

A. Carsonite, Model CFGR-327 with CFGRBK300 Mounting Bracket

RETROREFLECTIVE SHEETING

Channelizers, Barrier Markers, and Delineators

- A. Avery Dennison T-6500 Series (For rigid substrate devices only)
- B. Avery Dennison WR-6100 Series
- C. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
- D. Reflexite, PC-1000 Metalized Polycarbonate
- E. Reflexite, AC-1000 Acrylic
- F. Reflexite, AP-1000 Metalized Polyester
- G. Reflexite, Conformalight, AR-1000 Abrasion Resistant Coating
- H. 3M, High Intensity

Traffic Cones, 330 mm Sleeves

A. Reflexite SB (Polyester), Vinyl or "TR" (Semi-transparent)

Traffic Cones, 100 mm and 150 mm Sleeves

- A. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
- B. Reflexite, Vinyl, "TR" (Semi-transparent) or "Conformalight"
- C. 3M Series 3840

Barrels and Drums

- A. Avery Dennison WR-6100
- B. Nippon Carbide Industries, Flexible Ultralite Grade (ULG) II
- C. Reflexite, "Conformalight", "Super High Intensity" or "High Impact Drum Sheeting"
- D. 3M Series 3810

Barricades: Type I, Medium-Intensity (Typically Enclosed Lens, Glass-Bead Element)

- A. American Decal, Adcolite
- B. Avery Dennison, T-1500 and T-1600 series
- C. 3M Engineer Grade, Series 3170

Barricades: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element)

- A. Avery Dennison, T-2500 Series
- B. Kiwalite Type II
- C. Nikkalite 1800 Series

Signs: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element)

- A. Avery Dennison, T-2500 Series
- B. Kiwalite, Type II
- C. Nikkalite 1800 Series

Signs: Type III, High-Intensity (Typically Encapsulated Glass-Bead Element)

- A. Avery Dennison, T-5500 and T-5500A Series
- B. Nippon Carbide Industries, Nikkalite Brand Ultralite Grade II
- C. 3M Series 3870

Signs: Type IV, High-Intensity (Typically Unmetallized Microprismatic Element)

- A. Avery Dennison, T-6500 Series
- B. Nippon Carbide Industries, Crystal Grade, 94000 Series
- C. Nippon Carbide Industries, Model No. 94847 Fluorescent Orange
- D. Nippon Carbide Industries, Model No. 94844 Fluorescent Yellow Green

Signs: Type VI, Elastomeric (Roll-Up) High-Intensity, without Adhesive

- A. Avery Dennison, WU-6014
- B. Novabrite LLC, "Econobrite"
- C. Reflexite "Vinyl"D. Reflexite "SuperBright"
- E. Reflexite "Marathon"
- F. 3M Series RS34 Orange and RS20 Fluorescent Orange

Signs: Type VII, Super-High-Intensity (Typically Unmetallized Microprismatic Element)

- A. 3M LDP Series 3924 Fluorescent Orange
- B. 3M LDP Series 3970

Signs: Type VIII, Super-High-Intensity (Typically Unmetallized Microprismatic Element)

- A. Avery Dennison, T-7500 Series
- B. Avery Dennison, T-7511 Fluorescent Yellow
- C. Avery Dennison, T-7513 Fluorescent Yellow Green
- D. Avery Dennison, W-7514 Fluorescent Orange
- E. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92802 White
- F. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92844 Fluorescent Yellow/Green
- G. Nippon Carbide Industries, Nikkalite Crystal Grade Model 92847 Fluorescent Orange

Signs: Type IX, Very-High-Intensity (Typically Unmetallized Microprismatic Element)

- A. 3M VIP Series 3981 Diamond Grade Fluorescent Yellow
- B. 3M VIP Series 3983 Diamond Grade Fluorescent Yellow/Green
- C. 3M VIP Series 3990 Diamond Grade

SPECIALTY SIGNS

- A. Hallmark Technologies, Inc., All Sign STOP Sign (All Plastic), 750 mm
- B. Reflexite "Endurance" Work Zone Sign (with Semi-Rigid Plastic Substrate)

SIGN SUBSTRATE

Fiberglass Reinforced Plastic (FRP)

- A. Fiber-Brite
- B. Sequentia, "Polyplate"
- C. Inteplast Group "InteCel" (13 mm for Post-Mounted CZ Signs, 1200 mm or less)

Aluminum Composite

- A. Alcan Composites "Dibond Material, 2 mm" (for temporary construction signs only)
- B. Mitsubishi Chemical America, Alpolic 350 (for temporary construction signs only)

8-1.03 STATE-FURNISHED MATERIALS

Attention is directed to Section 6-1.02, "State-Furnished Materials," of the Standard Specifications and these special provisions.

The following materials will be furnished to the Contractor:

- A. Communication Equipment Three Ethernet Switches, and two Device Servers and one Model 334 cabinet.
- B. One Model 334 cabinet for UPS system.
- C. External Modems "2400 baud" or compatible.

Model 510 changeable message signs, wiring harness, and controller assembly, including the controller unit and completely wired cabinet, will be furnished to the Contractor at District Warehouse.

The Contractor shall notify the District Warehouse Manager, Telephone 530-225-3291 and the Engineer not less than 48 hours before State-furnished material is to be picked up by the Contractor. A full description of the material and the time the material will be picked up shall be provided. The number, type, and size of the sign panels, and the contract number shall also be provided to the District Warehouse Manager.

SECTION 8-2. CONCRETE

8-2.01 PORTLAND CEMENT CONCRETE

Portland cement concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions.

References to Section 90-2.01, "Portland Cement," of the Standard Specifications shall mean Section 90-2.01, "Cement," of the Standard Specifications.

Mineral admixture shall be combined with cement in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures," of the Standard Specifications for the concrete materials specified in Section 56-2, "Roadside Signs," of the Standard Specifications.

The requirements of Section 90-4.08, "Required Use of Mineral Admixture," of the Standard Specifications shall not apply to Section 19-3.025C, "Soil Cement Bedding," of the Standard Specifications.

The Department maintains a list of sources of fine and coarse aggregate that have been approved for use with a reduced amount of mineral admixture in the total amount of cementitious material to be used. A source of aggregate will be considered for addition to the approved list if the producer of the aggregate submits to the Transportation Laboratory certified test results from a qualified testing laboratory that verify the aggregate complies with the requirements. Prior to starting the testing, the aggregate test shall be registered with the Department. A registration number can be obtained by calling (916) 227-7228. The registration number shall be used as the identification for the aggregate sample in correspondence with the Department. Upon request, a split of the tested sample shall be provided to the Department. Approval of aggregate will depend upon compliance with the specifications, based on the certified test results submitted, together with any replicate testing the Department may elect to perform. Approval will expire 3 years from the date the most recent registered and evaluated sample was collected from the aggregate source.

Qualified testing laboratories shall conform to the following requirements:

- A. Laboratories performing ASTM Designation: C 1293 shall participate in the Cement and Concrete Reference Laboratory (CCRL) Concrete Proficiency Sample Program and shall have received a score of 3 or better on all tests of the previous 2 sets of concrete samples.
- B. Laboratories performing ASTM Designation: C 1260 shall participate in the Cement and Concrete Reference Laboratory (CCRL) Pozzolan Proficiency Sample Program and shall have received a score of 3 or better on the shrinkage and soundness tests of the previous 2 sets of pozzolan samples.

Aggregates on the list shall conform to one of the following requirements:

- A. When the aggregate is tested in conformance with the requirements in California Test 554 and ASTM Designation: C 1293, the average expansion at one year shall be less than or equal to 0.040 percent; or
- B. When the aggregate is tested in conformance with the requirements in California Test 554 and ASTM Designation: C 1260, the average of the expansion at 16 days shall be less than or equal to 0.15 percent.

The amounts of cement and mineral admixture used in cementitious material shall be sufficient to satisfy the minimum cementitious material content requirements specified in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," of the Standard Specifications and shall conform to the following:

- A. The minimum amount of cement shall not be less than 75 percent by mass of the specified minimum cementitious material content.
- B. The minimum amount of mineral admixture to be combined with cement shall be determined using one of the following criteria:
 - 1. When the calcium oxide content of a mineral admixture is equal to or less than 2 percent by mass, the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix.
 - 2. When the calcium oxide content of a mineral admixture is greater than 2 percent by mass, and any of the aggregates used are not listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 25 percent by mass of the total amount of cementitious material to be used in the mix.
 - 3. When the calcium oxide content of a mineral admixture is greater than 2 percent by mass and the fine and coarse aggregates are listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix.
 - 4. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," of the Standard Specifications is used, the amount of mineral admixture shall not be less than 10 percent by mass of the total amount of cementitious material to be used in the mix.
 - 5. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," of the Standard Specifications is used and the fine and coarse aggregates are listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 7 percent by mass of the total amount of cementitious material to be used in the mix.
- C. The total amount of mineral admixture shall not exceed 35 percent by mass of the total amount of cementitious material to be used in the mix. Where Section 90-1.01, "Description," of the Standard Specifications specifies a maximum cementitious content in kilograms per cubic meter, the total mass of cement and mineral admixture per cubic meter shall not exceed the specified maximum cementitious material content.

The Contractor will be permitted to use Type III portland cement for concrete used in the manufacture of precast concrete members.

SECTION 8-3. WELDING

8-3.01 WELDING

GENERAL

Flux core welding electrodes conforming to the requirements of AWS A5.20 E6XT-4 or E7XT-4 shall not be used to perform welding for this project.

Wherever reference is made to the following AWS welding codes in the Standard Specifications, on the plans, or in these special provisions, the year of adoption for these codes shall be as listed:

AWS Code	Year of Adoption	
D1.1	2002	
D1.4	1998	
D1.5	2002	
D1.6	1999	

Requirements of the AWS welding codes shall apply unless specified otherwise in the Standard Specifications, on the plans, or in these special provisions. Wherever the abbreviation AWS is used, it shall be equivalent to the abbreviations ANSI/AWS or AASHTO/AWS.

Section 6.1.1.1 of AWS D1.5 is replaced with the following:

Quality Control (QC) shall be the responsibility of the Contractor. As a minimum, the Contractor shall perform inspection and testing of each weld joint prior to welding, during welding, and after welding as specified in this section and as necessary to ensure that materials and workmanship conform to the requirements of the contract documents.

Sections 6.1.3 through 6.1.4.3 of AWS D1.1, Section 7.1.2 of AWS D1.4, and Sections 6.1.1.2 through 6.1.3.3 of AWS D1.5 are replaced with the following:

The QC Inspector shall be the duly designated person who acts for and on behalf of the Contractor for inspection, testing, and quality related matters for all welding.

Quality Assurance (QA) is the prerogative of the Engineer. The QA Inspector is the duly designated person who acts for and on behalf of the Engineer.

The QC Inspector shall be responsible for quality control acceptance or rejection of materials and workmanship, and shall be currently certified as an AWS Certified Welding Inspector (CWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors."

The QC Inspector may be assisted by an Assistant QC Inspector provided that this individual is currently certified as an AWS Certified Associate Welding Inspector (CAWI) in conformance with the requirements in AWS QC1, "Standard for AWS Certification of Welding Inspectors." The Assistant QC Inspector may perform inspection under the direct supervision of the QC Inspector provided the Assistant is always within visible and audible range of the QC Inspector. The QC Inspector shall be responsible for signing all reports and for determining if welded materials conform to workmanship and acceptance criteria. The ratio of QC Assistants to QC Inspectors shall not exceed 5 to 1.

When the term "Inspector" is used without further qualification, it shall refer to the QC Inspector.

Section 6.14.6, "Personnel Qualification," of AWS D1.1, Section 7.8, "Personnel Qualification," of AWS D1.4, and Section 6.1.3.4, "Personnel Qualification," of AWS D1.5 are replaced with the following:

Personnel performing nondestructive testing (NDT) shall be qualified and certified in conformance with the requirements of the American Society for Nondestructive Testing (ASNT) Recommended Practice No. SNT-TC-1A and the Written Practice of the NDT firm. The Written Practice of the NDT firm shall meet or exceed the guidelines of the ASNT Recommended Practice No. SNT-TC-1A. Individuals who perform NDT, review the results, and prepare the written reports shall be either:

- A. Certified NDT Level II technicians, or;
- B. Level III technicians who hold a current ASNT Level III certificate in that discipline and are authorized and certified to perform the work of Level II technicians.

Section 6.5.4 of AWS D1.5 is replaced with the following:

The QC Inspector shall inspect and approve each joint preparation, assembly practice, welding technique, joint fit-up, and the performance of each welder, welding operator, and tack welder to make certain that the applicable requirements of this code and the approved Welding Procedure Specification (WPS) are met. The QC Inspector shall examine the work to make certain that it meets the requirements of Sections 3 and 6.26. The size and contour of all welds shall be measured using suitable gages. Visual inspection for cracks in welds and base metal, and for other discontinuities should be aided by strong light magnifiers, or such other devices as may be helpful. Acceptance criteria different from those specified in this code may be used when approved by the Engineer.

Section 6.6.5, "Nonspecified NDT Other than Visual," of AWS D1.1, Section 6.6.5 of AWS D1.4 and Section 6.6.5 of AWS D1.5 shall not apply.

For any welding, the Engineer may direct the Contractor to perform NDT that is in addition to the visual inspection or NDT specified in the AWS or other specified welding codes, in the Standard Specifications, or in these special provisions. Additional NDT required by the Engineer will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Should any welding deficiencies be discovered by this additional NDT, all costs associated with the repair of the deficient area, including NDT of the weld and of the weld repair, and any delays caused by the repair, shall be at the Contractor's expense.

Repair work to correct welding deficiencies discovered by visual inspection or NDT, or by additional NDT directed or performed by the Engineer, and any associated delays or expenses caused to the Contractor by performing these repairs, shall be at the Contractor's expense.

The Engineer shall have the authority to verify the qualifications or certifications of any welder, QC Inspector, or NDT personnel to specified levels by retests or other means approved by the Engineer.

Continuous inspection shall be provided when any welding is being performed. Continuous inspection, as a minimum, shall include having a QC Inspector within such close proximity of all welders or welding operators so that inspections by the QC Inspector of each welding operation at each welding location shall not lapse for a period exceeding 30 minutes.

Inspection and approval of all joint preparations, assembly practices, joint fit-ups, welding techniques, and the performance of each welder, welding operator, and tack welder shall be documented by the QC Inspector on a daily basis for each day welding is performed. For each inspection, including fit-up, Welding Procedure Specification (WPS) verification, and final weld inspection, the QC Inspector shall confirm and document compliance with the requirements of the AWS or other specified code criteria and the requirements of these special provisions on all welded joints before welding, during welding, and after the completion of each weld.

When joint weld details that are not prequalified to the details of Section 3 of AWS D1.1 or to the details of Figure 2.4 or 2.5 of AWS D1.5 are proposed for use in the work, the joint details, their intended locations, and the proposed welding parameters and essential variables, will be approved by the Engineer. The Engineer shall have 2 weeks to complete the review of the proposed joint detail locations. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Upon approval of the proposed joint detail locations and qualification of the proposed joint details, welders and welding operators using these details shall perform a qualification test plate using the WPS variables and the joint detail to be used in production. The test plate shall have the maximum thickness to be used in production and a minimum length of 180 mm and minimum finish welded width 460 mm. The test plate shall be mechanically and radiographically tested. Mechanical and radiographic testing and acceptance criteria shall be as specified in the applicable AWS codes.

In addition to the requirements specified in the applicable code, the period of effectiveness for a welder's or welding operator's qualification shall be a maximum of 3 years for the same weld process, welding position, and weld type. If production welding will be performed without gas shielding, then qualification shall also be without gas shielding. Excluding welding of fracture critical members, a valid qualification at the beginning of work on a contract will be acceptable for the entire period of the contract, as long as the welder's or welding operator's work remains satisfactory.

The Engineer will witness all qualification tests for WPSs that were not previously approved by the Department. An approved independent third party will witness the qualification tests for welders or welding operators. The independent third party shall be a current CWI and shall not be employed by the contractor performing the welding. The Engineer shall have 2 weeks to review the qualifications and copy of the current certification of the independent third party. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The Contractor shall notify the Engineer one week prior to performing any qualification tests. Witnessing of qualification tests by the Engineer shall not constitute approval of the intended joint locations, welding parameters, or essential variables.

In addition to the requirements of AWS D1.5 Section 5.12 or 5.13, welding procedures qualification, for work welded in conformance with that code, shall conform to the following requirements:

- A. Unless considered prequalified, fillet welds, including reinforcing fillet welds, shall be qualified in each position. The fillet weld soundness test shall be conducted using the essential variables of the WPS as established by the Procedure Qualification Record (PQR.)
- B. For qualification of joints that do not conform to Figures 2.4 and 2.5 of AWS D1.5, two WPS qualification tests are required. The tests conforming to AWS D1.5 Section 5.13 shall be conducted using both Figure 5.1 and Figure 5.3. The test conforming to Figure 5.3 shall be conducted using the same welding electrical parameters that were established for the test conducted conforming to Figure 5.1.

- C. The travel speed, current, and voltage values that are used for tests conducted per AWS D1.5 Section 5.12 or 5.13 shall be consistent for each weld joint, and shall in no case vary by more than 10 percent for travel speed, 10 percent for current, and 7 percent for voltage.
- D. For a WPS qualified in conformance with AWS D1.5 Section 5.13, the values to be used for calculating ranges for current and voltage shall be based on the average of all weld passes made in the test. Heat input shall be calculated using the average of current and voltage of all weld passes made in the test for a WPS qualified in conformance with Section 5.12 or 5.13.
- E. To qualify for unlimited material thickness, two qualification tests are required for WPSs utilized for welding material thicknesses greater than 38 mm. One test shall be conducted using 20-mm thick test plates, and one test shall be conducted using test plates with a thickness between 38 mm and 50 mm. Two maximum heat input tests may be conducted for unlimited thickness qualification.
- F. Macroetch tests are required for WPS qualification tests, and acceptance shall be per AWS D1.5 Section 5.19.3.
- G. When a weld joint is to be made using a combination of qualified WPSs, each process shall be qualified separately.
- H. When a weld joint is to be made using a combination of qualified and prequalified processes, the WPS shall reflect both processes and the limitations of essential variables, including weld bead placement, for both processes.
- I. Prior to preparing mechanical test specimens, the PQR welds shall be inspected by visual and radiographic tests. Backing bar shall be 75 mm in width and shall remain in place during NDT testing. Results of the visual and radiographic tests shall comply with AWS D1.5 Section 6.26.2, excluding Section 6.26.2.2. Test plates that do not comply with both tests shall not be used.

WELDING QUALITY CONTROL

Welding quality control shall conform to the requirements in the AWS or other specified welding codes, the Standard Specifications, and these special provisions.

Unless otherwise specified, welding quality control shall apply when any work is welded in conformance with the provisions in Section 49, "Piling," Section 52, "Reinforcement," Section 55, "Steel Structures," or Section 75-1.035, "Bridge Joint Restrainer Units," of the Standard Specifications.

The welding of fracture critical members (FCMs) shall conform to the provisions specified in the Fracture Control Plan (FCP) and herein.

The Contractor shall designate in writing a welding Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for the quality of welding, including materials and workmanship, performed by the Contractor and subcontractors.

The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, reviewing, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall be a registered professional engineer or shall be currently certified as a CWI or a CAWI.

The QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor.

Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project, except for the following conditions:

- A. The work is welded in conformance with AWS D1.5 and is performed at a permanent fabrication or manufacturing facility which is certified under the AISC Quality Certification Program, Category Cbr, Major Steel Bridges and Fracture Critical endorsement F.
- B. The welding is performed on pipe pile material at a permanent pipe manufacturing facility authorized to apply the American Petroleum Institute (API) monogram for API 5L pipe.

For welding performed at such facilities, the inspection personnel or NDT firms may be employed or compensated by the facility performing the welding.

Prior to submitting the Welding Quality Control Plan (WQCP) required herein, a pre-welding meeting between the Engineer, the Contractor's QCM, and a representative from each entity performing welding or inspection for this project, shall be held to discuss the requirements for the WQCP.

The Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 2 copies of a separate WQCP for each subcontractor or supplier for each item of work for which welding is to be performed.

The Contractor shall allow the Engineer 2 weeks to review the WQCP submittal after a complete plan has been received. No welding shall be performed until the WQCP is approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

An amended WQCP or any addendum to the approved WQCP shall be submitted to, and approved in writing by the Engineer, for proposed revisions to the approved WQCP. An amended WQCP or addendum will be required for revisions to the WQCP, including but not limited to a revised WPS; additional welders; changes in NDT firms, QC, or NDT personnel or procedures; or updated systems for tracking and identifying welds. The Engineer shall have 1 week to complete the review of the amended WQCP or addendum. Work affected by the proposed revisions shall not be performed until the amended WQCP or addendum has been approved. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

Information regarding the contents, format, and organization of a WQCP, is available at the Transportation Laboratory or the following website:

http://www.dot.ca.gov/hq/esc/Translab/smbresources.htm

After final approval of the WQCP, amended WQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of the approved documents. A copy of the Engineer approved document shall be available at each location where welding is to be performed.

A daily production log for welding shall be kept for each day that welding is performed. The log shall clearly indicate the locations of all welding. The log shall include the welders' names, amount of welding performed, any problems or deficiencies discovered, and any testing or repair work performed, at each location. The daily report from each QC Inspector shall also be included in the log.

The following items shall be included in a Welding Report that is to be submitted to the Engineer within 10 days following the performance of any welding:

- A. Reports of all visual weld inspections and NDT.
- B. Radiographs and radiographic reports, and other required NDT reports.
- C. Documentation that the Contractor has evaluated all radiographs and other nondestructive tests and corrected all rejectable deficiencies, and all repaired welds have been reexamined by the required NDT and found acceptable.
- D. Daily production log.

The following information shall be clearly written on the outside of radiographic envelopes: name of the QCM, name of the nondestructive testing firm, name of the radiographer, date, contract number, complete part description, and all included weld numbers or a report number, as detailed in the WQCP. In addition, all innerleaves shall have clearly written on them the part description and all included weld numbers, as detailed in the WQCP.

Reports regarding NDT shall be signed by both the NDT technician and the person that performed the review, and then submitted directly to the QCM for review and signature prior to submittal to the Engineer. Corresponding names shall be clearly printed or typewritten next to all signatures.

The Engineer will review the Welding Report to determine if the Contractor is in conformance with the WQCP. Unless otherwise specified, the Engineer shall be allowed 10 days to review the report and respond in writing after a complete Welding Report has been received. Prior to receiving notification from the Engineer of the Contractor's conformance with the WQCP, the Contractor may encase in concrete or cover welds for which a Welding Report has been submitted. However, should the Contractor elect to encase or cover those welds prior to receiving notification from the Engineer, it is expressly understood that the Contractor shall not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase or cover welds pending notification by the Engineer, and in the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

The QC Inspector shall provide reports to the QCM on a daily basis for each day that welding is performed.

Except for noncritical weld repairs, the Engineer shall be notified immediately in writing when welding problems, deficiencies, base metal repairs, or any other type of repairs not submitted in the WQCP are discovered, and also of the proposed repair procedures to correct them. The Contractor shall allow the Engineer one week to review these procedures. No remedial work shall begin until the repair procedures are approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

The QCM shall sign and furnish to the Engineer, a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each item of work for which welding was performed. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans, the Standard Specifications, and these special provisions.

WELDING FOR OVERHEAD SIGN AND POLE STRUCTURES

The Contractor shall meet the following requirements for any work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications.

Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project, except for when the welding is performed at a permanent fabrication or manufacturing facility which is certified under the AISC Quality Certification Program, Category Sbd, Conventional Steel Building Structures.

Welding Qualification Audit

Contractors or subcontractors performing welding operations for overhead sign and pole structures shall not deliver materials to the project without having successfully completed the Department's "Manufacturing Qualification Audit for Overhead Sign and Pole Structures," hereinafter referred to as the audit, not more than one year prior to the delivery of the materials. The Engineer will perform the audit. Copies of the audit form, and procedures for requesting and completing the audit, are available at the Transportation Laboratory or the following website:

http://www.dot.ca.gov/hq/esc/Translab/smbresources.htm

An audit that was approved by the Engineer no more than one year prior to the beginning of work on this contract will be acceptable for the entire period of this contract, provided the Engineer determines the audit was for the same type of work that is to be performed on this contract.

Successful completion of an audit shall not relieve the Contractor of the responsibility for furnishing materials or producing finished work of the quality specified in these special provisions and as shown on the plans.

Welding Report

For work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, a Welding Report shall be submitted in conformance with the provisions in "Welding Quality Control," of these special provisions.

PAYMENT

Full compensation for conforming to the requirements of "Welding" shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor.

SECTION 9. DESCRIPTION OF BRIDGE WORK

The bridge work to be done consists, in general, of installation of electrical conduit of the following structure:

SPRING GARDEN OVERHEAD

(Bridge No. 9-0062)

SECTION 10. CONSTRUCTION DETAILS

SECTION 10-1. GENERAL

10-1.01 ORDER OF WORK

Order of work shall conform to the provisions in Section 5-1.05, "Order of Work," of the Standard Specifications and these special provisions.

The Contractor shall notify the Engineer not less than 16 days prior to the anticipated start of work for the following operations:

- A. Work that changes the width of the traveled way or shoulders, except for lane and shoulder closures delineated by traffic cones conforming to the details for lane closures in the Standard Plans.
- B. Work that requires closure of ramps and connector lanes.
- C. Work that changes the vertical clearance over the traveled way and shoulders.

Attention is directed to "Water Pollution Control" of these special provisions regarding the submittal and approval of the Water Pollution Control Program prior to performing work having potential to cause water pollution.

The first order of work shall be to submit working drawing for the sign structures.

At those locations exposed to public traffic where guard railings are to be constructed, the Contractor shall schedule operations so that at the end of each working day there shall be no post holes open nor shall there be any railing posts installed without the blocks and rail elements assembled and mounted thereon.

10-1.02 WATER POLLUTION CONTROL

Water pollution control work shall conform to the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications and these special provisions.

Water pollution control work shall conform to the requirements in the "Storm Water Pollution Prevention Plan (SWPPP) and Water Pollution Control Program (WPCP) Preparation Manual" and the "Construction Site Best Management Practices (BMPs) Manual," and addenda thereto issued up to, and including, the date of advertisement of the project. These manuals are hereinafter referred to respectively as the "Preparation Manual" and the "Construction Site BMPs Manual," and collectively, as the "Manuals." Copies of the Manuals may be obtained from the Department of Transportation, Material Operations Branch, Publication Distribution Unit, 1900 Royal Oaks Drive, Sacramento, California 95815, Telephone: (916) 445-3520, obtained Department's and may also he the Internet website http://www.dot.ca.gov/hq/construc/stormwater.html.

The Contractor shall know and fully comply with applicable provisions of the Manuals, and Federal, State, and local regulations and requirements that govern the Contractor's operations and storm water and non-storm water discharges from both the project site and areas of disturbance outside the project limits during construction. Attention is directed to Sections 7-1.01, "Laws to be Observed," and 7-1.12, "Indemnification and Insurance," of the Standard Specifications.

Water pollution control requirements shall apply to storm water and non-storm water discharges from areas outside the project site which are directly related to construction activities for this contract including, but not limited to, asphalt batch plants, material borrow areas, concrete plants, staging areas, storage yards and access roads. The Contractor shall comply with the Manuals for those areas and shall implement, inspect and maintain the required water pollution control practices. Installing, inspecting and maintaining water pollution control practices on areas outside the highway right of way not specifically arranged and provided for by the Department for the execution of this contract, will not be paid for.

The Contractor shall be responsible for penalties assessed or levied on the Contractor or the Department as a result of the Contractor's failure to comply with the provisions in this section "Water Pollution Control" including, but not limited to, compliance with the applicable provisions of the Manuals, and Federal, State and local regulations and requirements as set forth therein.

Penalties as used in this section shall include fines, penalties and damages, whether proposed, assessed, or levied against the Department or the Contractor, including those levied under the Federal Clean Water Act and the State Porter-Cologne Water Quality Control Act, by governmental agencies or as a result of citizen suits. Penalties shall also include payments made or costs incurred in settlement for alleged violations of the Manuals, or applicable laws, regulations, or requirements. Costs incurred could include sums spent instead of penalties, in mitigation or to remediate or correct violations.

RETENTION OF FUNDS

Notwithstanding any other remedies authorized by law, the Department may retain money due the Contractor under the contract, in an amount determined by the Department, up to and including the entire amount of Penalties proposed, assessed, or levied as a result of the Contractor's violation of the Manuals, or Federal or State law, regulations or requirements. Funds may be retained by the Department until final disposition has been made as to the Penalties. The Contractor shall remain liable for the full amount of Penalties until such time as they are finally resolved with the entity seeking the Penalties.

Retention of funds for failure to conform to the provisions in this section, "Water Pollution Control," shall be in addition to the other retention amounts required by the contract. The amounts retained for the Contractor's failure to conform to provisions in this section will be released for payment on the next monthly estimate for partial payment following the date when an approved WPCP has been implemented and maintained, and when water pollution has been adequately controlled, as determined by the Engineer.

When a regulatory agency identifies a failure to comply with the Manuals, or other Federal, State or local requirements, the Department may retain money due the Contractor, subject to the following:

- A. The Department will give the Contractor 30 days notice of the Department's intention to retain funds from partial payments which may become due to the Contractor prior to acceptance of the contract. Retention of funds from payments made after acceptance of the contract may be made without prior notice to the Contractor.
- B. No retention of additional amounts out of partial payments will be made if the amount to be retained does not exceed the amount being withheld from partial payments pursuant to Section 9-1.06, "Partial Payments," of the Standard Specifications.
- C. If the Department has retained funds, and it is subsequently determined that the State is not subject to the entire amount of the Costs and Liabilities assessed or proposed in connection with the matter for which the retention was made, the Department shall be liable for interest on the amount retained for the period of the retention. The interest rate payable shall be 6 percent per annum.

During the first estimate period that the Contractor fails to conform to the provisions in this section, "Water Pollution Control," the Department may retain an amount equal to 25 percent of the estimated value of the contract work performed.

The Contractor shall notify the Engineer immediately upon request from the regulatory agencies to enter, inspect, sample, monitor, or otherwise access the project site or the Contractor's records pertaining to water pollution control work. The Contractor and the Department shall provide copies of correspondence, notices of violations, enforcement actions or proposed fines by regulatory agencies to the requesting regulatory agency.

WATER POLLUTION CONTROL PROGRAM PREPARATION, APPROVAL AND AMENDMENTS

As part of the water pollution control work, a Water Pollution Control Program (WPCP) is required for this contract. The WPCP shall conform to the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications, the requirements in the Manuals, and these special provisions. Upon the Engineer's approval of the WPCP, the WPCP shall be considered to fulfill the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications for development and submittal of a Water Pollution Control Program.

No work having potential to cause water pollution, shall be performed until the WPCP has been approved by the Engineer. Approval shall not constitute a finding that the WPCP complies with applicable requirements of the Manuals and applicable Federal, State and local laws, regulations, and requirements.

The Contractor shall designate a Water Pollution Control Manager. The Water Pollution Control Manager shall be responsible for the preparation of the WPCP and required modifications or amendments, and shall be responsible for the implementation and adequate functioning of the various water pollution control practices employed. The Contractor may designate different Water Pollution Control Managers to prepare the WPCP and to implement the water pollution control practices. The Water Pollution Control Managers shall serve as the primary contact for issues related to the WPCP or its implementation. The Contractor shall assure that the Water Pollution Managers have adequate training and qualifications necessary to prepare the WPCP, implement and maintain water pollution control practices.

Within 5 working days after the approval of the contract, the Contractor shall submit 3 copies of the draft WPCP to the Engineer. The Engineer will have 5 working days to review the WPCP. If revisions are required, as determined by the Engineer, the Contractor shall revise and resubmit the WPCP within 5 working days of receipt of the Engineer's comments. The Engineer will have 3 working days to review the revisions. Upon the Engineer's approval of the WPCP, 4 approved copies of the WPCP, incorporating the required changes, shall be submitted to the Engineer. In order to allow construction activities to proceed, the Engineer may conditionally approve the WPCP while minor revisions are being completed. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for resulting losses, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

The WPCP shall incorporate water pollution control practices in the following categories:

- A. Soil stabilization.
- B. Sediment control.
- C. Wind erosion control.
- D. Tracking control.
- E. Non-storm water management.
- F. Waste management and materials pollution control.

The Contractor shall develop a Water Pollution Control Schedule that describes the timing of grading or other work activities that could affect water pollution. The Water Pollution Control Schedule shall be updated by the Contractor to reflect changes in the Contractor's operations that would affect the necessary implementation of water pollution control practices.

The Contractor shall complete the BMP checklists for each of the six categories presented in Section 3 of the Preparation Manual and shall incorporate the completed checklists and water pollution control practices into Sections 30.1, 30.2, and 30.3 of the WPCP. Water pollution control practices include the "Minimum Requirements" and other Contractor-selected water pollution control practices from the BMP checklists and "Project-Specific Minimum Requirements" identified in the Water Pollution Control Cost Break-Down of this section.

The WPCP shall include, but not be limited to, the items described in the Manuals and related information contained in the contract documents. The Contractor shall prepare an amendment to the WPCP when there is a change in construction activities or operations which may affect the discharge of pollutants to surface waters, ground waters, municipal storm drain systems, or when the Contractor's activities or operations violate Federal, State or local regulations, or when directed by the Engineer. Amendments shall identify additional water pollution control practices or revised operations, including those areas or operations not identified in the initially approved WPCP. Amendments to the WPCP shall be prepared and submitted for review and approval within a time approved by the Engineer, but in no case longer than the time specified for the initial submittal and review of the WPCP.

The Contractor shall keep one copy of the approved WPCP and approved amendments at the project site. The WPCP shall be made available upon request by a representative of the Regional Water Quality Control Board, State Water Resources Control Board, United States Environmental Protection Agency, or the local storm water management agency. Requests by the public shall be directed to the Engineer.

COST BREAK-DOWN

The Contractor shall include a Water Pollution Control Cost Break-Down in the WPCP which itemizes the contract lump sum for water pollution control work. The Contractor shall use the Water Pollution Control Cost Break-Down provided in this section as the basis for the cost break-down submitted with the WPCP. The Contractor shall use the Water Pollution Control Cost Break-Down to identify items, quantities and values for water pollution control work, excluding Temporary Water Pollution Control Practices for which there is a separate bid item. The Contractor shall be responsible for the accuracy of the quantities and values used in the cost break-down submitted with the WPCP. Partial payment for the item of water pollution control will not be made until the Water Pollution Control Cost Break-Down is approved by the Engineer.

Line items indicated in the Water Pollution Control Cost Break-Down in this section with a specified Estimated Quantity shall be considered a "Project-Specific Minimum Requirement." The Contractor shall incorporate the items with Contractor-designated quantities and values into the Water Pollution Control Cost Break-Down submitted with the WPCP.

Line items indicated in the Water Pollution Control Cost Break-Down in this section without a specified Estimated Quantity shall be considered by the Contractor for selection to meet the applicable "Minimum Requirements" as defined in the Manuals, or for other water pollution control work as identified in the BMP checklists presented in Section 3 of the Preparation Manual. In the Water Pollution Control Cost Break-Down submitted with the WPCP, the Contractor shall list only those water pollution control practices selected for the project, including quantities and values required to complete the work for those items.

The sum of the amounts for the items of work listed in the Water Pollution Control Cost Break-Down shall be equal to the contract lump sum price bid for water pollution control. Overhead and profit, shall be included in each individual item listed in the cost break-down.

WATER POLLUTION CONTROL COST BREAK-DOWN

Contract No. 02-0C0504

ITEM	ITEM DESCRIPTION	UNIT	ESTIMATED QUANTITY	VALUE	AMOUNT
SS-3	Hydraulic Mulch	M2			
SS-4	Hydroseeding	M2			
SS-5	Soil Binders	M2			
SS-6	Straw Mulch	M2			
SS-7	Geotextiles, Plastic Covers & Erosion Control Blankets/Mats	M2			
SS-8	Wood Mulching	M2			
SS-9	Earth Dikes/Drainage Swales & Lined Ditches	M			
SS-10	Outlet Protection/Velocity Dissipation Devices	EA			
SS-11	Slope Drains	EA			
SC-1	Silt Fence	M			
SC-2	Desilting Basin	EA			
SC-3	Sediment Trap	EA			
SC-4	Check Dam	EA			
SC-5	Fiber Rolls	M			
SC-6	Gravel Bag Berm	M			
SC-7	Street Sweeping and Vacuuming	LS			
SC-8	Sandbag Barrier	M			
SC-9	Straw Bale Barrier	M			
SC-10	Storm Drain Inlet Protection	EA			
WE-1	Wind Erosion Control	LS			
TC-1	Stabilized Construction Entrance/Exit	EA			
TC-2	Stabilized Construction Roadway	EA			
TC-3	Entrance/Outlet Tire Wash	EA			
NS-1	Water Conservation Practices	LS			
NS-2	Dewatering Operations	EA			
NS-3	Paving and Grinding Operations	LS			
NS-4	Temporary Stream Crossing	EA			
NS-5	Clear Water Diversion	EA			

ITEM	ITEM DESCRIPTION	UNIT	ESTIMATED QUANTITY	VALUE	AMOUNT
NS-6	Illicit Connection/Illegal Discharge Detection and Reporting	LS			
NS-7	Potable Water/Irrigation	LS			
NS-8	Vehicle and Equipment Cleaning	LS			
NS-9	Vehicle and Equipment Fueling	LS			
NS-10	Vehicle and Equipment Maintenance	LS			
WM-1	Material Delivery and Storage	LS			
WM-2	Material Use	LS			
WM-3	Stockpile Management	LS			
WM-4	Spill Prevention and Control	LS			
WM-5	Solid Waste Management	LS			
WM-6	Hazardous Waste Management	LS			
WM-7	Contaminated Soil Management	LS			
WM-8	Concrete Waste Management	LS			
WM-9	Sanitary/Septic Waste Management	LS			
WM-10	Liquid Waste Management	LS			

TOTAL	

Adjustments in the items of work and quantities listed in the approved cost break-down shall be made when required to address amendments to the WPCP, except when the adjusted items are paid for as extra work.

No adjustment in compensation will be made to the contract lump sum price paid for water pollution control due to differences between the quantities shown in the approved cost break-down and the quantities required to complete the work as shown on the approved WPCP. No adjustment in compensation will be made for ordered changes to correct WPCP work resulting from the Contractor's own operations or from the Contractor's negligence.

The approved cost break-down will be used to determine partial payments during the progress of the work and as the basis for calculating the adjustment in compensation for the item of water pollution control due to increases or decreases of quantities ordered by the Engineer. When an ordered change increases or decreases the quantities of an approved cost break-down item, the adjustment in compensation will be determined in the same manner specified for increases and decreases in the quantity of a contract item of work in conformance with the provisions in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications. If an ordered change requires a new item which is not on the approved cost break-down, the adjustment in compensation will be determined in the same manner specified for extra work in conformance with Section 4-1.03D, "Extra Work," of the Standard Specifications.

If requested by the Contractor and approved by the Engineer, changes to the water pollution control practices listed in the approved cost break-down, including addition of new water pollution control practices, will be allowed. Changes shall be included in the approved amendment of the WPCP. If the requested changes result in a net cost increase to the lump sum price for water pollution control, an adjustment in compensation will be made without change to the water pollution control item. The net cost increase to the water pollution control item will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications.

WPCP IMPLEMENTATION

Unless otherwise specified, upon approval of the WPCP, the Contractor shall be responsible throughout the duration of the project for installing, constructing, inspecting, maintaining, removing, and disposing of the water pollution control practices specified in the WPCP and in the amendments. Unless otherwise directed by the Engineer, the Contractor's responsibility for WPCP implementation shall continue throughout any temporary suspension of work ordered in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. Requirements for installation, construction, inspection, maintenance, removal, and disposal of water pollution control practices shall conform to the requirements in the Manuals and these special provisions.

If the Contractor or the Engineer identifies a deficiency in the implementation of the approved WPCP or amendments, the deficiency shall be corrected immediately. The deficiency may be corrected at a later date and time if requested by the Contractor and approved by the Engineer in writing, but shall be corrected prior to the onset of precipitation. If the Contractor fails to correct the identified deficiency by the date agreed or prior to the onset of precipitation, the project shall be in nonconformance with this section. Attention is directed to Section 5-1.01, "Authority of Engineer," of the Standard Specifications, and to "Retention of Funds" of this section for possible nonconformance penalties.

If the Contractor fails to conform to the provisions of this section, "Water Pollution Control," the Engineer may order the suspension of construction operations until the project complies with the requirements of this section.

Implementation of water pollution control practices may vary by season. The Construction Site BMPs Manual and these special provisions shall be followed for control practice selection of year-round, rainy season and non-rainy season water pollution control practices.

Year-Round Implementation Requirements

The Contractor shall have a year-round program for implementing, inspecting and maintaining water pollution control practices for wind erosion control, tracking control, non-storm water management, and waste management and materials pollution control.

The National Weather Service weather forecast shall be monitored and used by the Contractor on a daily basis. An alternative weather forecast proposed by the Contractor may be used if approved by the Engineer. If precipitation is predicted, the necessary water pollution control practices shall be deployed prior to the onset of the precipitation.

Disturbed soil areas shall be considered active whenever the soil disturbing activities have occurred, continue to occur or will occur during the ensuing 21 days. Nonactive areas shall be protected as prescribed in the Construction Site BMPs Manual within 14 days of cessation of soil disturbing activities or prior to the onset of precipitation, whichever occurs first.

Rainy Season Implementation Requirements

Soil stabilization and sediment control practices conforming to the requirements of these special provisions shall be provided throughout the rainy season, defined as between October 1 and April 15.

An implementation schedule of required soil stabilization and sediment control practices for disturbed soil areas shall be completed no later than 20 days prior to the beginning of each rainy season. The implementation schedule shall identify the soil stabilization and sediment control practices and the dates when the implementation will be 25 percent, 50 percent and 100 percent complete, respectively. For construction activities beginning during the rainy season, the Contractor shall implement applicable soil stabilization and sediment control practices.

Winter Shutdown

Non-Rainy Season Implementation Requirements

The non-rainy season shall be defined as days outside the defined rainy season. The Contractor's attention is directed to the Construction Site BMPs Manual for soil stabilization and sediment control implementation requirements on disturbed soil areas during the non-rainy season. Disturbed soil areas within the project shall be protected in conformance with the requirements in the Construction Site BMPs Manual with an effective combination of soil stabilization and sediment control.

MAINTENANCE

To ensure the proper implementation and functioning of water pollution control practices, the Contractor shall regularly inspect and maintain the construction site for the water pollution control practices identified in the WPCP. The construction site shall be inspected by the Contractor as follows:

- A. Prior to a forecast storm.
- B. After a precipitation event which causes site runoff.
- C. At 24 hour intervals during extended precipitation events.
- D. Routinely, a minimum of once every two weeks outside of the defined rainy season.
- E. Routinely, a minimum of once every week during the defined rainy season.

The Contractor shall use the Storm Water Quality Construction Site Inspection Checklist provided in the Preparation Manual or an alternative inspection checklist provided by the Engineer. One copy of each site inspection record shall be submitted to the Engineer within 24 hours of completing the inspection.

REPORTING REQUIREMENTS

Report of Discharges, Notices or Orders

If the Contractor identifies discharges into surface waters or drainage systems in a manner causing, or potentially causing, a condition of pollution, or if the project receives a written notice or order from a regulatory agency, the Contractor shall immediately inform the Engineer. The Contractor shall submit a written report to the Engineer within 7 days of the discharge event, notice or order. The report shall include the following information:

- A. The date, time, location, nature of the operation, and type of discharge, including the cause or nature of the notice or order.
- B. The water pollution control practices deployed before the discharge event, or prior to receiving the notice or order.
- C. The date of deployment and type of water pollution control practices deployed after the discharge event, or after receiving the notice or order, including additional measures installed or planned to reduce or prevent reoccurrence.
- D. An implementation and maintenance schedule for affected water pollution control practices.

Report of First-Time Non-Storm Water Discharge

The Contractor shall notify the Engineer at least 3 days in advance of first-time non-storm water discharge events. The Contractor shall notify the Engineer of the operations causing non-storm water discharges and shall obtain field approval for first-time non-storm water discharges. Non-storm water discharges shall be monitored at first-time occurrences and routinely thereafter.

PAYMENT

The contract lump sum price paid for prepare water pollution control program shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals for doing all the work involved in developing, preparing, obtaining approval of, revising, and amending the WPCP, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Attention is directed to Section 9-1.06, "Partial Payments," and Section 9-1.07, "Payment After Acceptance," of the Standard Specifications. Payments for Prepare Water Pollution Control Program will be made as follows:

- A. After the WPCP has been approved by the Engineer, 75 percent of the contract item price for Prepare Water Pollution Control Program will be included in the monthly partial payment estimate.
- B. After acceptance of the contract in conformance with the provisions in Section 7-1.17, "Acceptance of Contract," of the Standard Specifications, payment for the remaining 25 percent of the contract item price for Prepare Water Pollution Control Program will be made in conformance with the provisions in Section 9-1.07.

The contract lump sum price paid for water pollution control shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing, constructing, maintaining, removing, and disposing of water pollution control practices, including non-storm water management, and waste management and materials pollution water pollution control practices, except those for which there is a contract item of work as specified in the Standard Specifications and these special provisions, and as directed by the Engineer.

Water pollution control practices for which there is a contract item of work will be measured and paid for as that contract item of work.

10-1.03 NATURALLY-OCCURRING ASBESTOS SOILS PLAN AND MONITORING

GENERAL

Naturally occurring asbestos has been discovered within the project limits. All soil and rock excavated on the project shall be considered to be asbestos containing unless proven otherwise through soil testing by the Contractor. Managementl of this material shall comply with the Air Board Toxic Control Measure for Surfacing Applications ("ARB Rule", Title 17, California Code of Regulations, Section 93106).

Attention is directed to "Material with Naturally Occurring Asbestos" in "Earthwork" of these special provisions regarding the disturbance and handling of any earthen material.

The requirement of subsection (d), "Multi-employer work sites," of Section 1529, "Asbestos," of the Construction Safety Orders, Title 8, of the California Code of Regulations shall be observed during performance of the work. This shall not be construed as relieving the Contractor from the Contractor's responsibilities as provided in Section 8-1.01, "Subcontracting," of the Standard Specifications.

The Contractor shall retain a Certified Industrial Hygienist approved by the State to conduct air quality monitoring tests during all construction and disposal activities where existing soils are being disturbed. Disturbing, transportation, placement, handling, and disposal of soils containing naturally occurring asbestos shall result in no visible dust. The Contractor shall, at all times, while disturbing existing soils in any manner, keep work areas wet by use of water trucks or other means approved by the Engineer. The contractor shall notify the local Air Pollution Control District (APCD) at least 10 calendar days prior to the start of work.

Disturbing existing soils in any manner which contain naturally occurring asbestos shall be in accordance with all rules and regulations of agencies including, but not limited to, the following:

- A. California Department of Health Services
- B. California Division of Occupational Safety and Health Administration (CAL-OSHA)
- C. State of California- Air Resources Board (CARB).
- D. Plumas County Department of Health
- E. United States Environmental Protection Agency
- F. Department of Toxic Substances Control (DTSC)

SUBMITTALS

The Contractor shall prepare a project specific Health and Safety Plan to prevent or minimize exposure to asbestos. The Contractor's attention is directed to Title 8, California Code of Regulation, Section 5192 (b) (4)(B) and Section 1529. The Health and Safety Plan shall contain as a minimum but not be limited to: identification of key personnel for the project, job hazard analysis for work assignments, summary of risk assessment, air monitoring plan, personal protective equipment, delineation of work zones on-site, decontamination procedures, general safe work practices, security measures and worker training.

The Health and Safety Plan shall utilize monitoring and exposure standards based on Construction Standards of Title 8, California Code of Regulations, Construction Safety Orders, Section 1529, "Asbestos" and as a minimum shall contain a description of activities, specific means employed to achieve compliance, report of the technology considered, exposure monitoring, schedule for implementation of the program, a work practice program, administrative control schedule, and other relevant information. The Health and Safety Plan shall include an exposure monitoring plan that shall include, but not be limited to, upwind and downwind work area perimeter monitoring dust control measures and a discussion of how the exposure monitoring will be conducted during the progression of work. The Health and Safety Plan shall be approved by the Contractor's Certified Industrial Hygienist before submission to the Engineer for review and acceptance. The plan shall be

submitted to the Engineer at least 5 working days prior to beginning any work involving disturbing existing soils, including disposal activities.

TRAINING

Prior to performing any work involving disturbing existing soils, personnel who have no prior training or are not current in their training status, including State personnel, shall complete a safety training program provided by the Contractor, which meets the requirement of Title 8, California Code of Regulations, Section 1529. The Contractor shall provide a written certification of completion of safety training to the Engineer for all trained personnel prior to performing any work involving disturbing existing soils.

EQUIPMENT AND MEDICAL SURVEILLANCE

Personal protective equipment, training, and medical surveillance required by the Contractor's Health and Safety Plan shall be provided to State personnel by the Contractor. The number of State personnel will be 3.

PERMITS AND RECEIPTS

The Contractor shall procure all permits and licenses, pay all charges and fees, and give all notice necessary and incidental to the due and lawful prosecution of the work. The Contractor will supply receipts and testing results to the Engineer pursuant to Air Resources Board requirements for disposal of naturally occurring asbestos-containing material. The Contractor shall provide a copy of receipts and testing results to any party accepting the asbestos-containing material and obtain an acknowledgement of the asbestos-containing material content from the property owner. Notice to the property owner accepting the asbestos containing material shall conform to the requirements of the ARB Rule. Nothing in this section shall relieve the Contractor from complying with Section 7-1.13, "Disposal of Material Outside The Highway Right of Way", of the Standard Specifications. Attention is directed to disposal requirements also specified in "Material with Naturally Occurring Asbestos" elsewhere in these special provisions.

PAYMENT

Full compensation for complying with the requirements of this section shall be considered as included in the various items of work involved and no additional compensation will be allowed therefor.

10-1.04 OBSTRUCTIONS

Attention is directed to Section 8-1.10, "Utility and Non-Highway Facilities," and Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions.

The Contractor shall notify the Engineer and the appropriate regional notification center for operators of subsurface installations at least 2 working days, but not more than 14 calendar days, prior to performing any excavation or other work close to any underground pipeline, conduit, duct, wire or other structure. Regional notification centers include, but are not limited to, the following:

Notification Center	Telephone Number	
Underground Service Alert-Northern California (USA)	1-800-642-2444	
	1-800-227-2600	
Underground Service Alert-Southern California (USA)	1-800-422-4133	
	1-800-227-2600	

10-1.05 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES

Flagging, signs, and all other traffic control devices furnished, installed, maintained, and removed when no longer required shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Category 1 traffic control devices are defined as those devices that are small and lightweight (less than 45 kg), and have been in common use for many years. The devices shall be known to be crashworthy by crash testing, crash testing of similar devices, or years of demonstrable safe performance. Category 1 traffic control devices include traffic cones, plastic drums, portable delineators, and channelizers.

If requested by the Engineer, the Contractor shall provide written self-certification for crashworthiness of Category 1 traffic control devices. Self-certification shall be provided by the manufacturer or Contractor and shall include the following: date, Federal Aid number (if applicable), expenditure authorization, district, county, route and kilometer post of project limits; company name of certifying vendor, street address, city, state and zip code; printed name, signature and title of certifying person; and an indication of which Category 1 traffic control devices will be used on the project. The Contractor may obtain a standard form for self-certification from the Engineer.

Category 2 traffic control devices are defined as those items that are small and lightweight (less than 45 kg), that are not expected to produce significant vehicular velocity change, but may otherwise be potentially hazardous. Category 2 traffic control devices include: barricades and portable sign supports.

Category 2 devices purchased on or after October 1, 2000 shall be on the Federal Highway Administration (FHWA) Acceptable Crashworthy Category 2 Hardware for Work Zones list. This list is maintained by FHWA and can be located at the following internet address: http://safety.fhwa.dot.gov/fourthlevel/hardware/listing.cfm?code=workzone. The Department maintains a secondary list at the following internet address: http://www.dot.ca.gov/hq/traffops/signtech/signdel/pdf.htm.

Category 2 devices that have not received FHWA acceptance, and were purchased before October 1, 2000, may continue to be used until they complete their useful service life or until January 1, 2003, whichever comes first. Category 2 devices in use that have received FHWA acceptance shall be labeled with the FHWA acceptance letter number and the name of the manufacturer by the start of the project. The label shall be readable. After January 1, 2003, all Category 2 devices without a label shall not be used on the project.

If requested by the Engineer, the Contractor shall provide a written list of Category 2 devices to be used on the project at least 5 days prior to beginning any work using the devices. For each type of device, the list shall indicate the FHWA acceptance letter number and the name of the manufacturer.

Full compensation for providing self-certification for crashworthiness of Category 1 traffic control devices and for providing a list of Category 2 devices used on the project and labeling Category 2 devices as specified shall be considered as included in the prices paid for the various contract items of work requiring the use of the Category 1 or Category 2 traffic control devices and no additional compensation will be allowed therefor.

10-1.06 CONSTRUCTION AREA SIGNS

Construction area signs shall be furnished, installed, maintained, and removed when no longer required in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Attention is directed to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Type II retroreflective sheeting shall not be used on construction area sign panels.

The Contractor shall notify the appropriate regional notification center for operators of subsurface installations at least 2 working days, but not more than 14 calendar days, prior to commencing excavation for construction area sign posts. The regional notification centers include, but are not limited to, the following:

Notification Center	Telephone Number	
Underground Service Alert-Northern California (USA)	1-800-642-2444	
	1-800-227-2600	
Underground Service Alert-Southern California (USA)	1-800-422-4133	
	1-800-227-2600	

Excavations required to install construction area signs shall be performed by hand methods without the use of power equipment, except that power equipment may be used if it is determined there are no utility facilities in the area of the proposed post holes.

Sign substrates for stationary mounted construction area signs may be fabricated from fiberglass reinforced plastic as specified under "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

The Contractor may be required to cover certain signs during the progress of the work. Signs that are no longer required or that convey inaccurate information to the public shall be immediately covered or removed, or the information shall be corrected. Covers for construction area signs shall be of sufficient size and density to completely block out the complete face of the signs. The retroreflective face of the covered signs shall not be visible either during the day or at night. Covers shall be fastened securely so that the signs remain covered during inclement weather. Covers shall be replaced when they no longer cover the signs properly.

10-1.07 MAINTAINING TRAFFIC

Attention is directed to Sections 7-1.08, "Public Convenience," 7-1.09, "Public Safety," and 12, "Construction Area Traffic Control Devices," of the Standard Specifications and to the provisions in "Public Safety" and "Portable Changeable Message Signs" of these special provisions and these special provisions. Nothing in these special provisions shall be construed as relieving the Contractor from the responsibilities specified in Section 7-1.09.

Lane closures shall conform to the provisions in section "Traffic Control System for Lane Closure" of these special provisions.

Personal vehicles of the Contractor's employees shall not be parked on the traveled way including any section closed to public traffic.

Personal vehicles of the Contractor's employees shall not be parked on the traveled way or shoulders including any section closed to public traffic.

Whenever vehicles or equipment are parked on the shoulder within 1.8 m of a traffic lane, the shoulder area shall be closed with fluorescent traffic cones or portable delineators placed on a taper in advance of the parked vehicles or equipment and along the edge of the pavement at 7.5 m intervals to a point not less than 7.5 m past the last vehicle or piece of equipment. A minimum of 9 cones or portable delineators shall be used for the taper. A C23 (Road Work Ahead) or C24 (Shoulder Work Ahead) sign shall be mounted on a portable sign stand with flags. The sign shall be placed where designated by the Engineer.

A minimum of one paved traffic lane, not less than 3.6 m wide plus one 1.2 m paved shoulder shall be open for use by public traffic.

During operations, a minimum of one paved traffic lane, not less than 3.6 m, shall be open for use by public traffic. The lane closure shall be no more than 1.6 km in length. One lane may be closed and public traffic stopped for a period not to exceed 8 minutes. All accumulated traffic shall be allowed to pass through the work without being stopped before another closure is made. The Contractor shall conduct his operations so that the delay to public traffic shall not exceed 10 minutes. Delay is defined as the difference between the normal number of minutes it takes traffic to travel through the project when no work is in progress at the posted speed limit, and the number of minutes it takes traffic to travel through the project when the Contractor's operations are in progress.

No lane closures, shoulder closures, or other traffic restrictions will be allowed on the following day(s) (exact dates to be confirmed by the RE):

Special Event	Date
Hot August Nights	1 st week in August
Quincy-Sierra County Fair	3 rd Week in August
Reno Air Races	2 nd Week in September

The full width of the traveled way shall be open for use by public traffic on Saturdays, Sundays and designated legal holidays; after 3:00 p.m. on Fridays and the day preceding designated legal holidays; and when construction operations are not actively in progress.

Designated holidays are: January 1st, the third Monday in February, the last Monday in May, July 4th, the first Monday in September, November 11th, Thanksgiving Day and the following Friday, and December 24th and 25th. When a designated legal holiday falls on a Sunday, the preceding Saturday and the following Monday shall be a designated legal holidays. When a designated legal holiday falls on a Saturday, the preceding Friday and the following Sunday shall be designated legal holidays. When a designated legal holiday falls on a Friday or Monday, the entire weekend (Saturday and Sunday) shall be designated legal holidays.

Minor deviations from the requirements of this section concerning hours of work which do not significantly change the cost of the work may be permitted upon the written request of the Contractor if, in the opinion of the Engineer, public traffic will be better served and the work expedited. These deviations shall not be adopted by the Contractor until the Engineer has approved the deviations in writing. Other modifications will be made by contract change order.

10-1.08 CLOSURE REQUIREMENTS AND CONDITIONS

Lane closures shall conform to the provisions in "Maintaining Traffic" of these special provisions and these special provisions.

The term closure, as used herein, is defined as the closure of a traffic lane or lanes, including ramp or connector lanes, within a single traffic control system.

CLOSURE SCHEDULE

By noon Monday, the Contractor shall submit a written schedule of planned closures for the following week period, defined as Friday noon through the following Friday noon.

The Closure Schedule shall show the locations and times when the proposed closures are to be in effect. The Contractor shall use the Closure Schedule request forms furnished by the Engineer. Closure Schedules submitted to the Engineer with incomplete, unintelligible or inaccurate information will be returned for correction and resubmittal. The Contractor will be notified of disapproved closures or closures that require coordination with other parties as a condition of approval.

CONTINGENCY PLAN

The Contractor shall prepare a contingency plan for reopening closures to public traffic. The Contractor shall submit the contingency plan for a given operation to the Engineer within one working day of the Engineer's request.

LATE REOPENING OF CLOSURES

If a closure is not reopened to public traffic by the specified time, work shall be suspended in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. The Contractor shall not make any further closures until the Engineer has accepted a work plan, submitted by the Contractor, that will insure that future closures will be reopened to public traffic at the specified time. The Engineer will have 2 working days to accept or reject the Contractor's proposed work plan. The Contractor will not be entitled to any compensation for the suspension of work resulting from the late reopening of closures.

COMPENSATION

The Contractor shall notify the Engineer of any delay in the Contractor's operations due to the following conditions, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of those conditions, and the Contractor's loss due to that delay could not have been avoided by rescheduling the affected closure or by judicious handling of forces, equipment and plant, the delay will be considered a right of way delay within the meaning of Section 8-1.09, "Right of Way Delays," and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09:

- A. The Contractor's proposed Closure Schedule is denied and his planned closures are within the time frame allowed for closures in "Maintaining Traffic" of these special provisions, except that the Contractor will not be entitled to any compensation for amendments to the Closure Schedule that are not approved.
- B. The Contractor is denied a confirmed closure.

Should the Engineer direct the Contractor to remove a closure prior to the time designated in the approved Closure Schedule, any delay to the Contractor's schedule due to removal of the closure will be considered a right of way delay within the meaning of Section 8-1.09, "Right of Way Delays," and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09.

10-1.09 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE

A traffic control system shall consist of closing traffic lanes in conformance with the details shown on the plans, the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications, the provisions under "Maintaining Traffic" and "Construction Area Signs" of these special provisions, and these special provisions.

The provisions in this section will not relieve the Contractor from the responsibility to provide additional devices or take measures as may be necessary to comply with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications.

If components in the traffic control system are displaced or cease to operate or function as specified, from any cause, during the progress of the work, the Contractor shall immediately repair the components to the original condition or replace the components and shall restore the components to the original location.

When lane closures are made for work periods only, at the end of each work period, components of the traffic control system, except portable delineators placed along open trenches or excavation adjacent to the traveled way, shall be removed from the traveled way and shoulder. If the Contractor so elects, the components may be stored at selected central locations designated by the Engineer within the limits of the highway right of way.

One-way traffic shall be controlled through the project in conformance with the plan entitled "Traffic Control System for Lane Closure on Two Lane Conventional Highways" and these special provisions.

Utilizing a pilot car will be at the option of the Contractor. If the Contractor elects to use a pilot car, the cones shown along the centerline on the plan need not be placed. The pilot car shall have radio contact with personnel in the work area. The maximum speed of the pilot car through the traffic control zone shall be 40 kilometers per hour (25 mph).

Except for flagging costs, full compensation for providing the traffic control system shown on the plans (including signs) and for furnishing and operating the pilot car (including driver, radios, other equipment, and labor required) shall be considered as included in the contract prices paid for the various items of work and no separate payment will be made therefor. Flagging costs will be paid for as provided in Section 12-2.02, "Flagging Costs," of the Standard Specifications.

Traffic control system required by work which is classed as extra work, as provided in Section 4-1.03D of the Standard Specifications, will be paid for as a part of the extra work.

10-1.10 PORTABLE CHANGEABLE MESSAGE SIGN

Portable changeable message signs shall be furnished, placed, operated, and maintained at those locations shown on the plans or where designated by the Engineer in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions.

Attention is directed to "Maintaining Traffic" of these special provisions regarding the use of the portable changeable message signs.

The number of portable changeable message signs requires at any one time will be determined by the number of lane closures the Contractor determines are necessary for his operations.

A portable changeable message sign shall be placed in advance of the first warning sign for each stationary lane closure. Messages displayed on the sign shall be as directed by the Engineer.

Portable changeable message signs will be paid for on a lump sum basis.

The Contract lump sum price paid for portable changeable message sign shall include full compensation for furnished all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing, placing, operating, maintaining, repairing, replacing, transporting from location to location, and removing the portable changeable message signs, complete in place, as specified in the Standard Specifications and these Special Provisions, and as directed by the Engineer.

10-1.11 TEMPORARY CRASH CUSHION MODULE

This work shall consist of furnishing, installing, and maintaining sand filled temporary crash cushion modules in groupings or arrays at each location shown on the plans, as specified in these special provisions or where designated by the Engineer. The grouping or array of sand filled modules shall form a complete sand filled temporary crash cushion in conformance with the details shown on the plans and these special provisions.

Attention is directed to "Public Safety", of these special provisions.

Whenever the work or the Contractor's operations establishes a fixed obstacle, the exposed fixed obstacle shall be protected with a sand filled temporary crash cushion. The sand filled temporary crash cushion shall be in place prior to opening the lanes adjacent to the fixed obstacle to public traffic.

Sand filled temporary crash cushions shall be maintained in place at each location, including times when work is not actively in progress. Sand filled temporary crash cushions may be removed during a work period for access to the work provided that the exposed fixed obstacle is 4.6 m or more from a lane carrying public traffic and the temporary crash cushion is reset to protect the obstacle prior to the end of the work period in which the fixed obstacle was exposed. When no longer required, as determined by the Engineer, sand filled temporary crash cushions shall be removed from the site of the work.

At the Contractor's option, the modules for use in sand filled temporary crash cushions shall be either Energite III Inertial Modules, Fitch Inertial Modules or TrafFix Sand Barrels manufactured after March 31, 1997, or equal:

- A. Energite III and Fitch Inertial Modules, manufactured by Energy Absorption Systems, Inc., One East Wacker Drive, Chicago, IL 60601-2076. Telephone 1-312-467-6750, FAX 1-800-770-6755
 - Distributor (North): Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828. Telephone 1-800-884-8274, FAX 1-916-387-9734
 - 2. Distributor (South): Traffic Control Service, Inc., 1881 Betmor Lane, Anaheim, CA 92805. Telephone 1-800-222-8274, FAX 1-714-937-1070
- B. TrafFix Sand Barrels, manufactured by TrafFix Devices, Inc., 220 Calle Pintoresco, San Clemente, CA 92672. Telephone 1-949 361-5663, FAX 1-949 361-9205
 - 1. Distributor (North): United Rentals, Inc., 1533 Berger Drive, San Jose, CA 95112. Telephone 1-408 287-4303, FAX 1-408 287-1929
 - Distributor (South): Statewide Safety & Sign, Inc., P.O. Box 1440, Pismo Beach, CA 93448. Telephone 1-800-559-7080, FAX 1-805 929-5786

Modules contained in each temporary crash cushion shall be of the same type at each location. The color of the modules shall be the standard yellow color, as furnished by the vendor, with black lids. The modules shall exhibit good workmanship free from structural flaws and objectionable surface defects. The modules need not be new. Good used undamaged modules conforming to color and quality of the types specified herein may be utilized. If used Fitch modules requiring a seal are furnished, the top edge of the seal shall be securely fastened to the wall of the module by a continuous strip of heavy duty tape.

Modules shall be filled with sand in conformance with the manufacturer's directions, and to the sand capacity in kilograms for each module shown on the plans. Sand for filling the modules shall be clean washed concrete sand of commercial quality. At the time of placing in the modules, the sand shall contain not more than 7 percent water as determined by California Test 226.

Modules damaged due to the Contractor's operations shall be repaired immediately by the Contractor at the Contractor's expense. Modules damaged beyond repair, as determined by the Engineer, due to the Contractor's operations shall be removed and replaced by the Contractor at the Contractor's expense.

Temporary crash cushion modules shall be placed on movable pallets or frames conforming to the dimensions shown on the plans. The pallets or frames shall provide a full bearing base beneath the modules. The modules and supporting pallets or frames shall not be moved by sliding or skidding along the pavement or bridge deck.

A Type R or P marker panel shall be attached to the front of the crash cushion as shown on the plans, when the closest point of the crash cushion array is within 3.6 m of the traveled way. The marker panel, when required, shall be firmly fastened to the crash cushion with commercial quality hardware or by other methods determined by the Engineer.

At the completion of the project, temporary crash cushion modules, sand filling, pallets or frames, and marker panels shall become the property of the Contractor and shall be removed from the site of the work. Temporary crash cushion modules shall not be installed in the permanent work.

Temporary crash cushion modules placed in conformance with the provisions in "Public Safety" of these special provisions will not be measured nor paid for.

10-1.12 AGGREGATE BASE

Aggregate base shall be Class 2 and shall conform to the provisions in Section 26, "Aggregate Bases," of the Standard Specifications and these special provisions.

The restriction that the amount of reclaimed material included in Class 2 aggregate base not exceed 50 percent of the total volume of the aggregate used shall not apply. Aggregate for Class 2 aggregate base may include reclaimed glass. Aggregate base incorporating reclaimed glass shall not be placed at locations where surfacing will not be placed over the aggregate base.

10-1.13 ASPHALT CONCRETE

Asphalt concrete shall be Type A and shall conform to the provisions in Section 39, "Asphalt Concrete," of the Standard Specifications and these special provisions.

Asphalt concrete shall be produced from commercial quality asphalt and aggregates. The spreading and compacting provisions in Section 39-6.02, "Spreading," and Section 39-6.03, "Compacting," of the Standard Specifications will not apply.

The asphalt concrete shall conform to the following requirements:

- A. Asphalt concrete shall be produced at a central mixing plant.
- B. Aggregate shall conform to the provisions in Section 39-2.02, "Aggregate," of the Standard Specifications.
- C. The amount of asphalt binder to be mixed with the aggregate shall be between 4 percent and 7 percent by mass of the dry aggregate as determined by the Engineer. The fifth through eighth paragraphs in Section 39-3.03, "Proportioning," of the Standard Specifications shall not apply.
- D. Spreading and compacting shall be performed by methods that will produce an asphalt concrete surfacing of uniform smoothness, texture, and density.
- E. Compaction shall be performed with a tandem roller weighing not less than 7.2 tonnes.
- F. The finished surface shall meet the straightedge provisions in Section 39-6.03, "Compacting," of the Standard Specifications.

The miscellaneous areas to be paid for at the contract price per square meter for place asphalt concrete (miscellaneous area), in addition to the prices paid for the materials involved, shall be limited to the areas listed on the plans.

If the Contractor selects the batch mixing method, asphalt concrete shall be produced by the automatic batch mixing method in conformance with the provisions in Section 39-3.03A(2), "Automatic Proportioning," of the Standard Specifications.

If abrasive grinding is used to bring the finished surface to the specified surface tolerances, additional grinding shall be performed, as necessary, to extend the area ground in each lateral direction so that the lateral limits of grinding are at a constant offset from, and parallel to, the nearest lane line or pavement edge, and in each longitudinal direction so that the grinding begins and ends at lines normal to the pavement centerline, within any ground area. Ground areas shall be neat rectangular areas of uniform surface appearance. Abrasive grinding shall conform to the provisions in the first paragraph and the last 4 paragraphs in Section 42-2.02, "Construction," of the Standard Specifications.

10-1.14 PILING

GENERAL

Piling shall conform to the provisions in Section 49, "Piling," of the Standard Specifications, and these special provisions.

Unless otherwise specified, welding of any work performed in conformance with the provisions in Section 49, "Piling," of the Standard Specifications, shall be in conformance with the requirements in AWS D1.1.

Attention is directed to "Welding" of these special provisions.

Difficult pile installation is anticipated due to the presence of serpentine materials and traffic control.

Contract No. 02-0C0504

CAST-IN-DRILLED-HOLE CONCRETE PILES

Cast-in-drilled-hole concrete piling shall conform to the provisions in Section 49-4, "Cast-In-Place Concrete Piles," of the Standard Specifications and these special provisions.

The provisions of "Welding" of these special provisions shall not apply to temporary steel casings.

Cast-in-drilled-hole concrete piles 600 mm in diameter or larger may be constructed by excavation and depositing concrete under slurry.

Materials

Concrete deposited under slurry shall have a nominal penetration equal to or greater than 90 mm. Concrete shall be proportioned to prevent excessive bleed water and segregation.

Concrete deposited under slurry shall contain not less than 400 kg of cementitious material per cubic meter.

Mineral Slurry

Mineral slurry shall be mixed and thoroughly hydrated in slurry tanks, and slurry shall be sampled from the slurry tanks and tested before placement in the drilled hole.

Slurry shall be recirculated or continuously agitated in the drilled hole to maintain the specified properties.

Recirculation shall include removal of drill cuttings from the slurry before discharging the slurry back into the drilled hole. When recirculation is used, the slurry shall be sampled and tested at least every 2 hours after beginning its use until tests show that the samples taken from the slurry tank and from near the bottom of the hole have consistent specified properties. Subsequently, slurry shall be sampled at least twice per shift as long as the specified properties remain consistent.

Slurry that is not recirculated in the drilled hole shall be sampled and tested at least every 2 hours after beginning its use. The slurry shall be sampled midheight and near the bottom of the hole. Slurry shall be recirculated when tests show that the samples taken from midheight and near the bottom of the hole do not have consistent specified properties.

Slurry shall also be sampled and tested prior to final cleaning of the bottom of the hole and again just prior to placing concrete. Samples shall be taken from midheight and near the bottom of the hole. Cleaning of the bottom of the hole and placement of the concrete shall not start until tests show that the samples taken from midheight and near the bottom of the hole have consistent specified properties.

Mineral slurry shall be tested for conformance to the requirements shown in the following table:

MINERAL SLURRY		
PROPERTY	REQUIREMENT	TEST
Density (kg/m ³)		
- before placement in the drilled hole - during drilling	1030* to 1110*	Mud Weight (Density) API 13B-1
- prior to final cleaning - immediately prior	1030* to 1200*	Section 1
to placing concrete		
Viscosity (seconds/liter)		Marsh Funnel and Cup
bentonite	29 to 53	API 13B-1 Section 2.2
attapulgite	29 to 42	
рН	8 to 10.5	Glass Electrode pH Meter or pH Paper
Sand Content (percent)		Sand API 13B-1
- prior to final	less than or equal to	Section 5
cleaning - immediately prior to placing concrete	4.0	
*When approved by the Engineer, slurry may be used in salt		

^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m³.

Slurry temperature shall be at least 4 degrees Celsius when tested.

Any caked slurry on the sides or bottom of hole shall be removed before placing reinforcement. If concrete is not placed immediately after placing reinforcement, the reinforcement shall be removed and cleaned of slurry, the sides of the drilled hole cleaned of caked slurry, and the reinforcement again placed in the hole for concrete placement.

Synthetic Slurry

Synthetic slurries shall be used in conformance with the manufacturer's recommendations and these special provisions. The following synthetic slurries may be used:

PRODUCT	MANUFACTURER	
SlurryPro CDP	KB Technologies Ltd.	
	Suite 216	
	735 Broad Street	
	Chattanooga, TN 37402	
	(800) 525-5237	
Super Mud	PDS Company	
	c/o Champion Equipment Company	
	8140 East Rosecrans Ave.	
	Paramount, CA 90723	
	(562) 634-8180	
Shore Pac GCV	CETCO Drilling Products Group	
	1350 West Shure Drive	
	Arlington Heights, IL 60004	
	(847) 392-5800	

Inclusion of a synthetic slurry on the above list may be obtained by meeting the Department's requirements for synthetic slurries. The requirements can be obtained from the Office of Structure Design, P.O. Box 942874, Sacramento, CA 94274-0001

Synthetic slurries listed may not be appropriate for a given site.

Synthetic slurries shall not be used in holes drilled in primarily soft or very soft cohesive soils as determined by the Engineer.

A manufacturer's representative, as approved by the Engineer, shall provide technical assistance for the use of their product, shall be at the site prior to introduction of the synthetic slurry into a drilled hole, and shall remain at the site until released by the Engineer.

Synthetic slurries shall be sampled and tested at both mid-height and near the bottom of the drilled hole. Samples shall be taken and tested during drilling as necessary to verify the control of the properties of the slurry. Samples shall be taken and tested when drilling is complete, but prior to final cleaning of the bottom of the hole. When samples are in conformance with the requirements shown in the following tables for each slurry product, the bottom of the hole shall be cleaned and any loose or settled material removed. Samples shall be obtained and tested after final cleaning with steel reinforcement in place and just prior to placing concrete.

SlurryPro CDP synthetic slurries shall be tested for conformance to the requirements shown in the following table:

SLURRYPRO CDP KB Technologies Ltd.		
PROPERTY REQUIREMENT TEST		
	REQUIREMENT	1ES1
Density (kg/m ³) - during drilling	less than or equal to 1075*	Mud Weight (Density) API 13B-1 Section 1
- prior to final cleaning - just prior to placing concrete	less than or equal to 1025*	
Viscosity (seconds/liter) - during drilling	53 to 127	Marsh Funnel and Cup API 13B-1 Section 2.2
-prior to final cleaning - just prior to placing concrete	less than or equal to 74	
pН	6 to 11.5	Glass Electrode pH Meter or pH Paper
Sand Content (percent) - prior to final cleaning - just prior to placing concrete	less than or equal to 0.5	Sand API 13B-1 Section 5
*When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 .		

Super Mud synthetic slurries shall be tested for conformance to the requirements shown in the following table:

Slurry temperature shall be at least 4 degrees Celsius when

CLIDED MUD		
SUPER MUD		
	PDS Company	
PROPERTY	REQUIREMENT	TEST
Density (kg/m³) - prior to final cleaning - just prior to placing concrete	less than or equal to 1025*	Mud Weight (Density) API 13B-1 Section 1
Viscosity (seconds/liter) - during drilling	34 to 64	Marsh Funnel and Cup API 13B-1 Section 2.2
- prior to final cleaning - just prior to placing concrete	less than or equal to 64	
		Glass Electrode pH
pН	8 to 10.0	Meter or pH Paper
Sand Content (percent) - prior to final cleaning -just prior to placing concrete	less than or equal to 0.5	Sand API 13B-1 Section 5
*When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32		

 kg/m^3 . Slurry temperature shall be at least 4 degrees Celsius when

tested.

Shore Pac GCV synthetic slurries shall be tested for conformance to the requirements shown in the following table:

Shore Pac GCV		
CETCO Drilling Products Group		
PROPERTY	REQUIREMENT	TEST
Density (kg/m³) - prior to final cleaning - just prior to placing concrete	less than or equal to 1025*	Mud Weight (Density) API 13B-1 Section 1
Viscosity (seconds/liter) - during drilling - prior to final cleaning - just prior to placing concrete	35 to 78 less than or equal to 60	Marsh Funnel and Cup API 13B-1 Section 2.2
рН	8.0 to 11.0	Glass Electrode pH Meter or pH Paper
Sand Content (percent) - prior to final cleaning -just prior to placing concrete	less than or equal to 0.5	Sand API 13B-1 Section 5
*When approved by the Engineer, slurry may be used in salt		

^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 .

Slurry temperature shall be at least 4 degrees Celsius when tested.

Water Slurry

At the option of the Contractor water may be used as slurry when casing is used for the entire length of the drilled hole. Water slurry shall be tested for conformance to the requirements shown in the following table:

WATER SLURRY		
PROPERTY	REQUIREMENT	TEST
Density (kg/m³) - prior to final cleaning - just prior to placing concrete	1017 *	Mud Weight (Density) API 13B-1 Section 1
Sand Content (percent) - prior to final cleaning -just prior to placing concrete	less than or equal to 0.5	Sand API 13B-1 Section 5

^{*}When approved by the Engineer, salt water slurry may be used, and the allowable densities may be increased up to 32 kg/m³.

Construction

The Contractor shall submit a placing plan to the Engineer for approval prior to producing the test batch for cast-indrilled-hole concrete piling and at least 10 working days prior to constructing piling. The plan shall include complete descriptions, details, and supporting calculations as listed below:

A. Requirements for all cast-in-drilled hole concrete piling:

- 1. Concrete mix design, certified test data, and trial batch reports.
- 2. Drilling or coring methods and equipment.
- 3. Proposed method for casing installation and removal when necessary.
- 4. Plan view drawing of pile showing reinforcement and inspection pipes, if required.
- 5. Methods for placing, positioning, and supporting bar reinforcement.
- 6. Methods and equipment for accurately determining the depth of concrete and actual and theoretical volume placed, including effects on volume of concrete when any casings are withdrawn.
- 7. Methods and equipment for verifying that the bottom of the drilled hole is clean prior to placing concrete.
- 8. Methods and equipment for preventing upward movement of reinforcement, including the Contractor's means of detecting and measuring upward movement during concrete placement operations.

B. Additional requirements when concrete is placed under slurry:

- 1. Concrete batching, delivery, and placing systems, including time schedules and capacities therefor. Time schedules shall include the time required for each concrete placing operation at each pile.
- 2. Concrete placing rate calculations. When requested by the Engineer, calculations shall be based on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced.
- 3. Suppliers' test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives, including Material Safety Data Sheet.
- 4. Slurry testing equipment and procedures.
- 5. Methods of removal and disposal of excavation, slurry, and contaminated concrete, including removal rates.
- 6. Methods and equipment for slurry agitating, recirculating, and cleaning.

In addition to compressive strength requirements, the consistency of the concrete to be deposited under slurry shall be verified before use by producing a test batch. The test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during the placement of concrete in the piles. Concrete for the test batch shall be placed in an excavated hole or suitable container of adequate size to allow for testing as specified herein. Depositing of test batch concrete under slurry will not be required. In addition to meeting the specified nominal penetration, the test batch shall meet the following requirements:

- A. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be 2 hours or less, the test batch shall demonstrate that the proposed concrete mix design achieves either a penetration of at least 50 mm or a slump of at least 125 mm after twice that time has elapsed.
- B. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be more than 2 hours, the test batch shall demonstrate that the proposed concrete mix design achieves either a penetration of at least 50 mm or a slump of at least 125 mm after that time plus 2 hours has elapsed.

The time period shall begin at the start of placement. The concrete shall not be vibrated or agitated during the test period. Penetration tests shall be performed in conformance with the requirements in California Test 533. Slump tests shall be performed in conformance with the requirements in ASTM Designation: C 143. Upon completion of testing, the concrete shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

The concrete deposited under slurry shall be carefully placed in a compact, monolithic mass and by a method that will prevent washing of the concrete. Concrete deposited under slurry need not be vibrated. Placing concrete shall be a continuous operation lasting not more than the time required for each concrete placing operation at each pile, as submitted in the placing plan, unless otherwise approved in writing by the Engineer. The concrete shall be placed with concrete pumps and delivery tube system of adequate number and size to complete the placing of concrete in the time specified. The delivery tube system shall consist of one of the following:

- A. A tremie tube or tubes, each of which are at least 250 mm in diameter, fed by one or more concrete pumps.
- B. One or more concrete pump tubes, each fed by a single concrete pump.

The delivery tube system shall consist of watertight tubes with sufficient rigidity to keep the ends always in the mass of concrete placed. If only one delivery tube is utilized to place the concrete, the tube shall be placed near the center of the drilled hole. Multiple tubes shall be uniformly spaced in the hole. Internal bracing for the steel reinforcing cage shall accommodate the delivery tube system. Tremies shall not be used for piles without space for a 250-mm tube.

Spillage of concrete into the slurry during concrete placing operations shall not be allowed. Delivery tubes shall be capped with a watertight cap, or plugged above the slurry level with a good quality, tight fitting, moving plug that will expel the slurry from the tube as the tube is charged with concrete. The cap or plug shall be designed to be released as the tube is charged. The pump discharge or tremie tube shall extend to the bottom of the hole before charging the tube with concrete. After charging the delivery tube system with concrete, the flow of concrete through a tube shall be induced by slightly raising the discharge end. During concrete placement, the tip of the delivery tube shall be maintained as follows to prevent reentry of the slurry into the tube. Until at least 3 m of concrete has been placed, the tip of the delivery tube shall be within 150 mm of the bottom of the drilled hole, and then the embedment of the tip shall be maintained at least 3 m below the top surface of the concrete. Rapid raising or lowering of the delivery tube shall not be permitted. If the seal is lost or the delivery tube becomes plugged and must be removed, the tube shall be withdrawn, the tube cleaned, the tip of the tube capped to prevent entrance of the slurry, and the operation restarted by pushing the capped tube 3 m into the concrete and then reinitiating the flow of concrete.

When slurry is used, a fully operational standby concrete pump, adequate to complete the work in the time specified, shall be provided at the site during concrete placement. The slurry level shall be maintained within 300 mm of the top of the drilled hole.

A log of concrete placement for each drilled hole shall be maintained by the Contractor when concrete is deposited under slurry. The log shall show the pile location, tip elevation, dates of excavation and concrete placement, total quantity of concrete deposited, length and tip elevation of any casing, and details of any hole stabilization method and materials used. The log shall include a 215 mm x 280 mm sized graph of the concrete placed versus depth of hole filled. The graph shall be plotted continuously throughout placing of concrete. The depth of drilled hole filled shall be plotted vertically with the pile tip oriented at the bottom and the quantity of concrete shall be plotted horizontally. Readings shall be made at least at each 1.5 m of pile depth, and the time of the reading shall be indicated. The graph shall be labeled with the pile location, tip elevation, cutoff elevation, and the dates of excavation and concrete placement. The log shall be delivered to the Engineer within one working day of completion of placing concrete in the pile.

After placing reinforcement and prior to placing concrete in the drilled hole, if drill cuttings settle out of the slurry, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean.

If temporary casing is used, concrete placed under slurry shall be maintained at a level at least 1.5 m above the bottom of the casing. The withdrawal of casings shall not cause contamination of the concrete with slurry.

Material resulting from using slurry shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications.

Acceptance Testing and Mitigation

Vertical inspection pipes for acceptance testing shall be provided in all cast-in-drilled-hole concrete piles that are 600 mm in diameter or larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing to control ground water.

Inspection pipes shall be Schedule 40 polyvinyl chloride pipes with a nominal inside diameter of 50 mm. Each inspection pipe shall be capped top and bottom and shall have watertight couplers to provide a clean, dry and unobstructed 50-mm diameter clear opening from 1.0 m above the pile cutoff down to the bottom of the reinforcing cage.

If the Contractor drills the hole below the specified tip elevation, the reinforcement and the inspection pipes shall be extended to 75 mm clear of the bottom of the drilled hole.

Inspection pipes shall be placed around the pile, inside the outermost spiral or hoop reinforcement, and 75 mm clear of the vertical reinforcement, at a uniform spacing not exceeding 840 mm measured along the circle passing through the centers of inspection pipes. A minimum of 2 inspection pipes per pile shall be used. When the vertical reinforcement is not bundled and each bar is not more than 26 mm in diameter, inspection pipes may be placed 50 mm clear of the vertical reinforcement. The inspection pipes shall be placed to provide the maximum diameter circle that passes through the centers of the inspection pipes while maintaining the clear spacing required herein. The pipes shall be installed in straight alignment, parallel to the main reinforcement, and securely fastened in place to prevent misalignment during installation of the reinforcement and placing of concrete in the hole.

The Contractor shall log the location of the inspection pipe couplers with respect to the plane of pile cut off, and these logs shall be delivered to the Engineer upon completion of the placement of concrete in the drilled hole.

After placing concrete and before requesting acceptance tests, each inspection pipe shall be tested by the Contractor in the presence of the Engineer by passing a 48.3-mm diameter rigid cylinder 610 mm long through the complete length of pipe. If the 48.3-mm diameter rigid cylinder fails to pass any of the inspection pipes, the Contractor shall attempt to pass a 32.0-mm diameter rigid cylinder 1.375 m long through the complete length of those pipes in the presence of the Engineer. If an inspection pipe fails to pass the 32.0-mm diameter cylinder, the Contractor shall immediately fill all inspection pipes in the pile with water.

The Contractor shall replace each inspection pipe that does not pass the 32.0-mm diameter cylinder with a 50.8-mm diameter hole cored through the concrete for the entire length of the pile. Cored holes shall be located as close as possible to the inspection pipes they are replacing and shall be no more than 150 mm inside the reinforcement. Coring shall not damage the pile reinforcement. Cored holes shall be made with a double wall core barrel system utilizing a split tube type inner barrel. Coring with a solid type inner barrel will not be allowed. Coring methods and equipment shall provide intact cores for the entire length of the pile concrete. The coring operation shall be logged by an Engineering Geologist or Civil Engineer licensed in the State of California and experienced in core logging. Coring logs shall include complete descriptions of inclusions and voids encountered during coring, and shall be delivered to the Engineer upon completion. Concrete cores shall be preserved, identified with the exact location the core was recovered from within the pile, and made available for inspection by the Engineer.

Acceptance tests of the concrete will be made by the Engineer, without cost to the Contractor. Acceptance tests will evaluate the homogeneity of the placed concrete. Tests will include gamma-gamma logging. Tests may also include crosshole sonic logging and other means of inspection selected by the Engineer. The Contractor shall not conduct operations within 8.0 m of the gamma-gamma logging operations. The Contractor shall separate reinforcing steel as necessary to allow the Engineer access to the inspection pipes to perform gamma-gamma logging or other acceptance testing. After requesting acceptance tests and providing access to the piling, the Contractor shall allow 3 weeks for the Engineer to conduct these tests and make determination of acceptance if the 48.3-mm diameter cylinder passed all inspection pipes, and 4 weeks if only the 32.0-mm diameter cylinder passed all inspection pipes. Should the Engineer fail to complete these tests within the time allowance, and if in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in inspection, the delay will be considered a right of way delay as specified in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

All inspection pipes and cored holes in a pile shall be dewatered and filled with grout after notification by the Engineer that the pile is acceptable. Placement and removal of water in the inspection pipes shall be at the Contractor's expense. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. The inspection pipes and holes shall be filled using grout tubes that extend to the bottom of the pipe or hole or into the grout already placed.

If acceptance testing performed by the Engineer determines that a pile does not meet the requirements of the specifications, then that pile will be rejected and all depositing of concrete under slurry or concrete placed using temporary casing for the purpose of controlling groundwater shall be suspended until written changes to the methods of pile construction are approved in writing by the Engineer.

The Contractor shall submit to the Engineer for approval a mitigation plan for repair, supplementation, or replacement for each rejected cast-in-drilled-hole concrete pile, and this plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Prior to submitting this mitigation plan, the Engineer will hold a repair feasibility meeting with the Contractor to discuss the feasibility of repairing rejected piling. The Engineer will consider the size of the defect, the location of the defect, and the design information and corrosion protection considerations for the pile. This information will be made available to the Contractor, if appropriate, for the development of the mitigation plan. If the Engineer determines that it is not feasible to repair the rejected pile, the Contractor shall not include repair as a means of mitigation and shall proceed with the submittal of a mitigation plan for replacement or supplementation of the rejected pile.

If the Engineer determines that a rejected pile does not require mitigation due to structural, geotechnical, or corrosion concerns, the Contractor may elect to 1) repair the pile per the approved mitigation plan, or 2) not repair anomalies found during acceptance testing of that pile. For such unrepaired piles, the Contractor shall pay to the State, \$400 per cubic meter for the portion of the pile affected by the anomalies. The volume, in cubic meters, of the portion of the pile affected by the anomalies, shall be calculated as the area of the cross-section of the pile affected by each anomaly, in square meters, as determined by the Engineer, multiplied by the distance, in meters, from the top of each anomaly to the specified tip of the pile. If the volume calculated for one anomaly overlaps the volume calculated for additional anomalies within the pile, the calculated volume for the overlap shall only be counted once. In no case shall the amount of the payment to the State for any such pile be less than \$400. The Department may deduct the amount from any moneys due, or that may become due the Contractor under the contract.

Pile mitigation plans shall include the following:

- A. The designation and location of the pile addressed by the mitigation plan.
- B. A review of the structural, geotechnical, and corrosion design requirements of the rejected pile.
- C. A step by step description of the mitigation work to be performed, including drawings if necessary.
- D. An assessment of how the proposed mitigation work will address the structural, geotechnical, and corrosion design requirements of the rejected pile.
- E. Methods for preservation or restoration of existing earthen materials.
- F. A list of affected facilities, if any, with methods and equipment for protection of these facilities during mitigation.
- G. The State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor's (and Subcontractor's if applicable) name on each sheet.
- H. A list of materials, with quantity estimates, and personnel, with qualifications, to be used to perform the mitigation work.
- I. The seal and signature of an engineer who is licensed as a Civil Engineer by the State of California.

For rejected piles to be repaired, the Contractor shall submit a pile mitigation plan that contains the following additional information:

- A. An assessment of the nature and size of the anomalies in the rejected pile.
- B. Provisions for access for additional pile testing if required by the Engineer.

For rejected piles to be replaced or supplemented, the Contractor shall submit a pile mitigation plan that contains the following additional information:

- A. The proposed location and size of additional piling.
- B. Structural details and calculations for any modification to the structure to accommodate the replacement or supplemental piling.

All provisions for cast-in-drilled-hole concrete piling shall apply to replacement piling.

The Contractor shall allow the Engineer 3 weeks to review the mitigation plan after a complete submittal has been received.

Should the Engineer fail to review the complete pile mitigation submittal within the time specified, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the pile mitigation plan, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

When repairs are performed, the Contractor shall submit a mitigation report to the Engineer within 10 days of completion of the repair. This report shall state exactly what repair work was performed and quantify the success of the repairs relative to the submitted mitigation plan. The mitigation report shall be stamped and signed by an engineer that is licensed as a Civil Engineer by the State of California. The mitigation report shall show the State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor (and Subcontractor if applicable) name on each sheet. The Engineer will be the sole judge as to whether a mitigation proposal is acceptable, the mitigation efforts are successful, and to whether additional repairs, removal and replacement, or construction of a supplemental foundation is required.

10-1.15 STEEL STRUCTURES

Construction of steel structures shall conform to the provisions in Section 55, "Steel Structures," of the Standard Specifications and these special provisions.

Attention is directed to "Welding" in Section 8, "Materials," of these special provisions.

The following substitutions of high-strength steel fasteners shall be made:

METRIC SIZE SHOWN ON THE PLANS	SIZE TO BE SUBSTITUTED
ASTM Designation: A 325M (Nominal bolt diameter (mm or mm x thread pitch))	ASTM Designation: A 325 (Nominal bolt diameter (inch))
13 or 12.70, M12, M12 x 1.75	1/2
16 or 15.88, M16, M16 x 2	5/8
19 or 19.05, M20, M20 x 2.5	3/4
22 or 22.22, M22, M22 x 2.5	7/8
24, 25, or 25.40, M24, M24 x 3	1
29 or 28.58, M27, M24 x 3	1 1/8
32 or 31.75, M30, M30 x 3.5	1 1/4
38 or 38.10, M36, M36 x 4	1 1/2

MATERIALS

High-strength fastener assemblies and other bolts attached to structural steel with nuts and washers shall be zinc-coated. When direct tension indicators are used in these assemblies, the direct tension indicator and all components of the fastener assembly shall be zinc-coated by the mechanical deposition process.

ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE

Rotational capacity tests shall be performed on all lots of high-strength fastener assemblies prior to shipment of these lots to the project site. Zinc-coated assemblies shall be tested after all fabrication, coating, and lubrication of components has been completed. One hardened washer shall be used under each nut for the tests.

Each combination of bolt production lot, nut lot, and washer lot shall be tested as an assembly.

A rotational capacity lot number shall be assigned to each combination of lots tested. Each shipping unit of fastener assemblies shall be plainly marked with the rotational capacity lot number.

Two fastener assemblies from each rotational capacity lot shall be tested.

The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of long bolts. Fasteners are considered to be long bolts when full nut thread engagement can be achieved when installed in a bolt tension measuring device:

A. Long Bolt Test Equipment:

- 1. Calibrated bolt tension measuring device with adequate tension capacity for the bolts being tested.
- 2. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Long Bolt Test Procedure. A torque multiplier may be required for large diameter bolts.
- 3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F436.
- 4. Steel beam or member, such as a girder flange or cross frame, to which the bolt tension measuring device will be attached. The device shall be accessible from the ground.

B Long Bolt Test Procedure:

- 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head.
- 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank.
- 3. Insert the bolt into the bolt tension measuring device and install the required number of washers, and additional spacers as needed, directly beneath the nut to produce the thread stickout measured in Step 2 of this procedure.
- 4. Tighten the nut using a hand wrench to a snug-tight condition. The snug tension shall not be less than the Table A value but may exceed the Table A value by a maximum of 2 kips.

Table A

High-Strength Fastener Assembly Tension Values		
to Approximate Snug-Tight Condition		
Bolt Diameter Snug Tension		
(inches)	(kips)	
1/2	1	
5/8	2	
3/4	3	
7/8	4	
1	5	
1 1/8	6	
1 1/4 7		
1 3/8	9	
1 1/2	10	

5. Match-mark the assembly by placing a heavy reference start line on the face plate of the bolt tension measuring device which aligns with 1) a mark placed on one corner of the nut, and 2) a radial line placed across the flat on the end of the bolt, or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make an additional mark on the face plate, either 2/3 of a turn, one turn, or 1 1/3 turn clockwise from the heavy reference start line, depending on the bolt length being tested as shown in Table B.

Table B

Required Nut Rotation for Rotational Capacity Tests ^(a,b)		
1 est	S	
Bolt Length (measured	Required Rotation (turn)	
in Step 1)		
4 bolt diameters or less	2/3	
Greater than 4 bolt	1	
diameters but no more		
than 8 bolt diameters		
Greater than 8 bolt	1 1/3	
diameters, but no more		
than 12 bolt diameters ^(c)		
1		

- (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees; for bolts installed by 2/3 turn and more, the tolerance shall be plus or minus 45 degrees.
- (b) Applicable only to connections in which all material within grip of the bolt is steel.
- (c) When bolt length exceeds 12 diameters, the required rotation shall be determined by actual tests in a suitable tension device simulating the actual conditions.
- 6. Turn the nut to achieve the applicable minimum bolt tension value listed in Table C. After reaching this tension, record the moving torque, in foot-pounds, required to turn the nut, and also record the corresponding bolt tension value in pounds. Torque shall be measured with the nut in motion. Calculate the value, T (in ft-lbs), where T=[(the measured tension in pounds) x (the bolt diameter in inches) / 48 in/ft].

Table C

Minimum Tension Values for High-Strength		
Fastener Assemblies		
Bolt Diameter	Minimum Tension	
(inches)	(kips)	
1/2	12	
5/8	19	
3/4	28	
7/8	39	
1	51	
1 1/8	56	
1 1/4	71	
1 3/8	85	
1 1/2	103	

- Turn the nut further to increase bolt tension until the rotation listed in Table B is reached. The rotation is
 measured from the heavy reference line made on the face plate after the bolt was snug-tight. Record this bolt
 tension.
- 8. Loosen and remove the nut and examine the threads on both the nut and bolt.

C. Long Bolt Acceptance Criteria:

1. An assembly shall pass the following requirements to be acceptable: 1) the measured moving torque (Step 6) shall be less than or equal to the calculated value, T (Step 6), 2) the bolt tension measured in Step 7 shall be greater than or equal to the applicable turn test tension value listed in Table D, 3) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, 4) the bolt does not shear from torsion or fail during the test, and 5) the assembly does not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head is expected and will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable.

Table D

Turn Test Tension Values		
Bolt Diameter	Turn Test Tension	
(inches)	(kips)	
1/2	14	
5/8	22	
3/4	32	
7/8	45	
1	59	
1 1/8	64	
1 1/4	82	
1 3/8	98	
1 1/2	118	

The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of short bolts. Fasteners are considered to be short bolts when full nut thread engagement cannot be achieved when installed in a bolt tension measuring device:

A. Short Bolt Test Equipment:

- 1. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Short Bolt Test Procedure. A torque multiplier may be required for large diameter bolts.
- 2. Spud wrench or equivalent.
- Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside
 diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the
 requirements in ASTM Designation: F436.

4. Steel plate or girder with a hole to install bolt. The hole size shall be 1.6 mm greater than the nominal diameter of the bolt to be tested. The grip length, including any plates, washers, and additional spacers as needed, shall provide the proper number of threads within the grip, as required in Step 2 of the Short Bolt Test Procedure.

B. Short Bolt Test Procedure:

- 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head.
- 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank
- 3. Install the bolt into a hole on the plate or girder and install the required number of washers and additional spacers as needed between the bearing face of the nut and the underside of the bolt head to produce the thread stickout measured in Step 2 of this procedure.
- 4. Tighten the nut using a hand wrench to a snug-tight condition. The snug condition shall be the full manual effort applied to the end of a 305 mm long wrench. This applied torque shall not exceed 20 percent of the maximum allowable torque in Table E.

Table E

Tuoie E		
Maximum Allowable Torque for High-Strength		
Fastener Assemblies		
Bolt Diameter	Torque	
(inches)	(ft-lbs)	
1/2	145	
5/8	285	
3/4	500	
7/8	820	
1	1220	
1 1/8	1500	
1 1/4	2130	
1 3/8	2800	
1 1/2	3700	

- 5. Match-mark the assembly by placing a heavy reference start line on the steel plate or girder which aligns with 1) a mark placed on one corner of the nut and 2) a radial line placed across the flat on the end of the bolt or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make 2 additional small marks on the steel plate or girder, one 1/3 of a turn and one 2/3 of a turn clockwise from the heavy reference start line on the steel plate or girder.
- 6. Using the torque wrench, tighten the nut to the rotation value listed in Table F. The rotation is measured from the heavy reference line described in Step 5 made after the bolt was snug-tight. A second wrench shall be used to prevent rotation of the bolt head during tightening. Measure and record the moving torque after this rotation has been reached. The torque shall be measured with the nut in motion.

Table F

1 4010 1		
Nut Rotation Required for Turn-of-Nut		
Installation ^(a,b)		
Required Rotation (turn)		
1/3		
(a) Nut rotation is relative to bolt, regardless of the		
element (nut or bolt) being turned. For bolts		
installed by 1/2 turn and less, the tolerance shall be		
plus or minus 30 degrees.		

- (b) Applicable only to connections in which all material within grip of the bolt is steel.
- 7. Tighten the nut further to the 2/3-turn mark as indicated in Table G. The rotation is measured from the heavy reference start line made on the plate or girder when the bolt was snug-tight. Verify that the radial line on the bolt end or on the exposed portions of the threads of tension control bolts is still in alignment with the start line.

Table G

Required Nut Rotation for Rotational Capacity Test		
Bolt Length (measured	Required Rotation (turn)	
in Step 1)		
4 bolt diameters or less	2/3	

- 8. Loosen and remove the nut and examine the threads on both the nut and bolt.
- C. Short Bolt Acceptance Criteria:
- 1. An assembly shall pass the following requirements to be acceptable: 1) the measured moving torque from Step 6 shall be less than or equal to the maximum allowable torque from Table E, 2) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, 3) the bolt does not shear from torsion or fail during the test, and 4) the assembly shall not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable.

INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER ARRIVAL ON THE JOB SITE

Installation tension tests and rotational capacity tests on high-strength fastener assemblies shall be performed by the Contractor prior to acceptance or installation and after arrival of the fastener assemblies on the project site. Installation tension tests and rotational capacity tests shall be performed at the job-site, in the presence of the Engineer, on each rotational capacity lot of fastener assemblies.

Installation tension tests shall be performed on 3 representative fastener assemblies in conformance with the provisions in Section 8, "Installation," of the RCSC Specification. For short bolts, Section 8.2, "Pretensioned Joints," of the RCSC Specification shall be replaced by the "Pre-Installation Testing Procedures," of the "Structural Bolting Handbook," published by the Steel Structures Technology Center, Incorporated.

The rotational capacity tests shall be performed in conformance with the requirements for rotational capacity tests in "Rotational Capacity Testing Prior to Shipment to Job Site" of these special provisions.

At the Contractor's expense, additional installation tension tests, tests required to determine job inspecting torque, and rotational capacity tests shall be performed by the Contractor on each rotational capacity lot, in the presence of the Engineer, if 1) any fastener is not used within 3 months after arrival on the jobsite, 2) fasteners are improperly handled, stored, or subjected to inclement weather prior to final tightening, 3) significant changes are noted in original surface condition of threads, washers, or nut lubricant, or 4) the Contractor's required inspection is not performed within 48 hours after all fasteners in a joint have been tensioned.

Failure of a job-site installation tension test or a rotational capacity test will be cause for rejection of unused fasteners that are part of the rotational capacity lot.

When direct tension indicators are used, installation verification tests shall be performed in conformance with Appendix Section X1.4 of ASTM Designation: F959, except that bolts shall be initially tensioned to a value 5 percent greater than the minimum required bolt tension.

WELDING

Table 2.2 of ANSI/ AASHTO/AWS D1.5 is superseded by the following table:

Base Metal Thickness of the Thicker Part Joined, mm	Minimum Effective Partial Joint Penetration Groove Weld Size, * mm
Over 6 to 13 inclusive	5
Over 13 to 19 inclusive	6
Over 19 to 38 inclusive	8
Over 38 to 57 inclusive	10
Over 57 to 150 inclusive	13
Over 150	16

^{*} Except the weld size need not exceed the thickness of the thinner part

Dimensional details and workmanship for welded joints in tubular and pipe connections shall conform to the provisions in Part A, "Common Requirements of Nontubular and Tubular Connections," and Part D, "Specific Requirements for Tubular Connections," in Section 2 of AWS D1.1.

MEASUREMENT AND PAYMENT

If a portion of or all check samples are removed at a mill more than 480 air line kilometers from both Sacramento and Los Angeles, shop inspection expenses will be sustained by the State which are in addition to expenses incurred for fabrication site inspection. Payment to the Contractor for furnishing structural steel will be reduced \$2,000 for each mill located more than 480 air line kilometers from both Sacramento and Los Angeles.

10-1.16 SIGN STRUCTURES

Sign structures and foundations for overhead signs shall conform to the provisions in Section 56-1, "Overhead Sign Structures," of the Standard Specifications and these special provisions.

Before commencing fabrication of sign structures, the Contractor shall submit 2 sets of working drawings to the Engineer in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The working drawings shall include sign panel dimensions, span lengths, post heights, anchorage layouts, proposed splice locations, a snugging and tensioning pattern for anchor bolts and high strength bolted connections, and details for permanent steel anchor bolt templates. The working drawings shall be supplemented with a written quality control program that includes methods, equipment, and personnel necessary to satisfy the requirements specified herein and in the special provisions.

Working drawings shall be 559 mm x 864 mm or 279 mm x 432 mm in size and each drawing and calculation sheet shall include the State assigned designations for the contract number, sign structure type and reference as shown on the contract plans, District-County-Route-Kilometer Post, and contract number.

The Engineer shall have 20 working days to review the sign structure working drawings after a complete submittal has been received. No fabrication or installation of sign structures shall be performed until the working drawings are approved in writing by the Engineer.

Should the Engineer fail to complete the review within the time allowance and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the sign structure working drawings, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

A permanent steel template shall be used to maintain the proper anchor bolt spacing.

One top nut, one leveling nut, and 2 washers shall be provided for the upper threaded portion of each anchor bolt.

Surfaces of base plates which are to come in contact with concrete, grout, or washers and leveling nuts shall be flat to within 3 mm tolerance in 305 mm, and to within 5 mm tolerance overall. Faying surfaces of plates in high-strength bolted connections including flange surfaces of field splices, chord joints, and frame junctures, and contact surfaces of plates used for breakaway slip base assemblies shall be flat to within 2 mm tolerance in 305 mm, and within 3 mm tolerance overall.

Thermally cut holes made in tubular members of sign supports, other than holes in base and flange plates, shall initially be made a minimum of 2 mm undersized, and then be mechanically enlarged by reaming or grinding to the final required size and shape. All edges shall have a surface roughness of not greater than $6.35 \, \mu m$. Round holes may be drilled to the exact final diameter. No holes shall be made in members unless the holes are shown on the plans or are approved in writing by the Engineer.

Steel members used for overhead sign structures shall receive nondestructive testing (NDT) in conformance with AWS D1.1 and the following:

A.

Weld Location	Weld Type	Minimum Required NDT
Welds for butt joint welds in tubular sections, nontubular sections, and posts	CJP groove weld with backing ring	100% UT or RT
Longitudinal seam welds*	PJP groove weld	25% MT
	CJP groove weld	100% UT or RT
Welds for base plate, flange plate, or end cap to post or mast arm	CJP groove weld	25% UT or RT
	Fillet weld	25% MT
* Longitudinal seam welds shall have 60% minimum penetration, except that within		

^{*} Longitudinal seam welds shall have 60% minimum penetration, except that within 150 mm of any circumferential weld, longitudinal seam welds shall be CJP groove welds.

- B. A written procedure approved by the Engineer shall be used when performing UT on material less than 8 mm thick. Contoured shoes shall be used when performing UT on round tubular sections under 1270 mm in diameter.
- C. When less than 100 percent of a weld is specified for NDT, and if defects are found during this inspection, additional NDT shall be performed. This additional NDT shall be performed on 25 percent of the total weld for all similar welds, as determined by the Engineer, produced for sign structures in the project. If any portion of the additional weld inspected is found defective, 100 percent of all similar welds produced for sign structures in the project, as determined by the Engineer, shall be tested.

Circumferential welds and base plate to post welds may be repaired only one time without written permission from the Engineer.

Full compensation for furnishing anchor bolt templates and for testing of welds shall be considered as included in the contract price paid per kilogram for furnish sign structure and no additional compensation will be allowed therefor.

10-1.17 MISCELLANEOUS CONCRETE CONSTRUCTION

Minor concrete shall conform to the provisions in Section 73, "Concrete Curbs and Sidewalks," of the Standard Specifications.

10-1.18 CHAIN LINK FENCE

Chain link fence and gate shall be Type CL-1.8 and shall conform to the provisions in Section 80, "Fences," of the Standard Specifications.

10-1.19 MARKERS

Markers shall conform to the provisions in Section 82, "Markers and Delineators," of the Standard Specifications and these special provisions.

Markers on flexible posts shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Flexible posts shall be made from a flexible white plastic which shall be resistant to impact, ultraviolet light, ozone, and hydrocarbons. Flexible posts shall resist stiffening with age and shall be free of burns, discoloration, contamination, and other objectionable marks or defects which affect appearance or serviceability.

Retroreflective sheeting for metal and flexible target plates shall be the retroreflective sheeting designated for markers conforming to the requirements in ASTM Designation: D 4956-95 and in conformance with the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions.

10-1.20 METAL BEAM GUARD RAILING

Metal beam guard railing shall be constructed in conformance with the provisions in Section 83-1, "Railings," of the Standard Specifications and these special provisions.

Attention is directed to "Order of Work" of these special provisions.

Line posts and blocks shall be wood.

TERMINAL SYSTEM (TYPE SRT)

Terminal system (Type SRT) shall be furnished and installed as shown on the plans and in conformance with these special provisions.

Terminal system (Type SRT) shall be a SRT-350 Slotted Rail Terminal (8 post system) as manufactured by Trinity Industries, Inc., and shall include all the items detailed for terminal system (Type SRT) shown on the plans.

The 5 mm x 44 mm x 75 mm plate washer shown on the elevation view and in Section D-D at Wood Post No. 1 shall be omitted.

Arrangements have been made to insure that any successful bidder can obtain the SRT-350 Slotted Rail Terminal (8 post system) from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, Telephone 1-800-772-7976. The price quoted by the manufacturer for the SRT-350 Slotted Rail Terminal (8 post system), FOB Centerville, Utah is \$895.00, not including sales tax.

The above price will be firm for orders placed on or before July 29, 2005, provided delivery is accepted within 90 days after the order is placed.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that terminal systems (Type SRT) conform to the contract plans and specifications, conform to the prequalified design and material requirements and were manufactured in conformance with the approved quality control program.

The terminal system (Type SRT) shall be installed in conformance with the manufacturer's installation instructions and these requirements. The steel foundation tubes with soil plates attached, shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 100 mm thick and each layer shall be moistened and thoroughly compacted. Wood terminal posts shall be inserted into the steel foundation tubes by hand. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 65°C or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes.

Surplus excavated material remaining after the terminal system (Type SRT) has been constructed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer.

SECTION 10-2. (BLANK)

SECTION 10-3. SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS

10-3.01 DESCRIPTION

Install Traffic Operations System consisting of a Roadside Weather Information System (RWIS) with Pavement Sensors, two Changeable Message Signs (CMS), and an Uninterruptible Power Supply (UPS), shall conform to the provisions in Section 86, "Signals, Lighting and Electrical Systems," of the Standard Specifications and these special provisions.

10-3.02 COST BREAK-DOWN

Cost break-downs shall conform to the provisions in Section 86-1.03, "Cost Break-Down," of the Standard Specifications and these special provisions.

The Engineer shall be furnished a cost break-down for each contract lump sum item of work described in this Section 10-3.

The cost break-down shall be submitted to the Engineer for approval within 5 days after the contract has been approved. The cost break-down shall be approved, in writing, by the Engineer before any partial payment for the items of electrical work will be made.

The cost breakdown shall include the following items in addition to those listed in the Standard Specifications:

- A. Fiber optic cable
- B. Fiber optic transmitter and receiver assemblies
- C. Fiber distribution unit

- D. Innerduct
- E. Transformer
- F. Instrument Tower
- F. Remote Processing unit
- G. Surface/Subsurface Sensor
- H. Humidity/Air Temperature Sensor
- I. Wind Speed/Direction Sensor

10-3.03 FOUNDATIONS

Reinforced cast-in-drilled-hole concrete pile foundations for traffic signal and lighting standards shall conform to the provisions in "Piling" of these special provisions.

10-3.04 STANDARDS, STEEL PEDESTALS AND POSTS

Standards, steel pedestals and posts for traffic signal and lighting standards shall conform to the provisions in "Steel Structures" of these special provisions.

All ferrous metal parts of tubular sign structures shall be galvanized and shall not be painted.

10-3.05 CONDUIT

Conduit to be installed underground shall be Type 1 or Type 3 unless otherwise specified. Detector termination conduits shall be Type 3 or Type 4.

The conduit in a foundation and between a foundation and the nearest pull box shall be Type 1.

Conduit sizes shown on the plans and specified in the Standard Specifications and these special provisions are referenced to metallic type conduit. When rigid non-metallic conduit is required or allowed, the nominal equivalent industry size shall be used as shown in the following table:

Size Designation for Metallic Type Conduit	Equivalent Size for Rigid Non-metallic Conduit
21	20
27	25
41	40
53	50
63	65
78	75
103	100

When a standard coupling cannot be used for joining Type 1 conduit, a UL listed threaded union coupling conforming to the provisions in Section 86-2.05C, "Installation," of the Standard Specifications, or a concrete-tight split coupling, or concrete-tight set screw coupling shall be used.

When Type 3 conduit is placed in a trench (not in pavement or under portland cement concrete sidewalk), after the bedding material is placed and the conduit is installed, the trench shall be backfilled with commercial quality concrete, containing not less than 250 kg of portland cement per cubic meter, to not less than 100 mm above the conduit before additional backfill material is placed.

Conduit runs shown on the plans to be located behind curbs may be installed in the street, within 0.9-m of, and parallel with the face of the curb, by the "Trenching in Pavement Method" in conformance with the provisions in Section 86-2.05C, "Installation," of the Standard Specifications. Pull boxes shall be located behind the curb or at the locations shown on the plans.

After conductors have been installed, the ends of conduits terminating in pull boxes, service equipment enclosures, and controller cabinets shall be sealed with an approved type of sealing compound.

At other locations where conduit is required to be installed under pavement and if a delay to vehicles will not exceed 5 minutes, conduit may be installed by the "Trenching in Pavement Method."

At the option of the Contractor, the final 0.6-m of conduit entering a pull box in a reinforced concrete structure may be Type 4.

10-3.06 HIGH DENSITY POLYETHYLENE (HDPE) CONDUIT

GENERAL

High density polyethylene (HDPE) conduit for communications applications shall conform to the details shown on the plans, these special provisions, and as directed by Engineer.

MATERIAL

High density polyethylene conduit shall be manufactured from high density polyethylene virgin compounds.

High density polyethylene compounds used in the manufacture of communication conduit shall conform to the following Cell Classifications specified in ASTM Designation: D 3350:

Property	Cell Classification
Density	3
Melt index	3 or 4 or 2 in accordance with 4 1,3, 2
Flexural modulus	4 or 5
Tensile strength	4 or 5
Environmental stress crack resistance	3 or 4 or 7 in accordance with 4 1.3.3
Hydrostatic design basis	0, 1, 2, 3 or 4
Ultraviolet stabilizer	Cp
	In accordance with 4,3 or 4.4.1, or E in accordance with
	4.4
b HDPE resin shall contain not less than 2 ± 0.5 percent carbon black ultraviolet stabilizer.	

CONDUIT

High density polyethylene conduit size (nominal trade outside diameter) and location shall be as shown on plans. Conduit shall be the smooth interior wall type.

High density polyethylene conduit shall be suitable for cable and conductor installation methods as described in Section 86 of the Standard Specifications, in these special provisions, and in "Air Blown Method" as described elsewhere in these special provisions.

High density polyethylene conduit color shall be black with orange colored stripe. Orange colored stripe shall consist of not less than 2 stripes, with longitudinal orientation, evenly spaced.

Conduit shall contain carbon black ultraviolet shielding suitable for the conduit to sustain unprotected outdoor exposure for at least one years.

Conduit shall be continuously marked with clear, distinctive and permanent markings at intervals not greater than 2 meters. The marking shall be in a contrasting color to the conduit color. The height of the marking shall be approximately 2.5 mm or larger. Conduit marking information shall include, as a minimum, the following information:

- A. Nominal Size
- B. Dimension Ratio (DR)
- C. Manufacturer Name and Product/Model Number
- D. Material Code
- E. Plant Identification
- F. Production Date
- G. Cell Classification
- G. Iron Pipe Size (IPS)

Coils and reels shall have sequential measurement markings every meter.

High density polyethylene conduit shall be DR 11 per ASTM D3035 for controlled outside diameter.

High density polyethylene conduit shall be IPS outside diameter controlled in accordance with the manufacturer's production tolerances. The wall thickness of DR or SDR sized conduit shall be in accordance with the manufacturer's production tolerances.

High density polyethylene conduit shall meet or exceed the following:

PROPERTY	TEST METHOD (ASTM unless shown otherwise)	UNIT	VALUE (Nominal)
Material Classification	D 3350		PE33 or PE34
Density	D 1505	g/cm3	0.941
Flow Rate	D 1238	g/10 Min.	0.40
Flexural Modulus	D 790	MPa	552
Tensile Strength	D 638	MPa	20.6
Environmental Stress	D1693	Hours	Meet Cell Classification 3
Crack Resistance			
HDB @ 23°C	D 2837	MPa	Meet Cell Classification 0,
			1, 2, 3 or 4
UV Stabilizer	D 1603	%C	not less than 2
Hardness	D 2240	Shore D	60-68
Elongation	D 638	%, minimum	750
	(50.8 mm/Min)		
Brittleness Temperature	D 746	°C	<-75
Vicat Softening	D 1525	°C	123
Temperature			

JOINING OF CONDUIT

Conduit shall be joined by heat fusion. Heat fusion (includes electrofusion) of high density polyethylene conduit shall be by methods recommended by the conduit manufacturer, and with equipment approved for the purpose. Equipment shall not expose conduit to direct flame. Heat fusion shall be performed by conduit manufacturer certified or authorized personnel. A minimum of 2 test fusions, by each fusion operator, shall be demonstrated to the Engineer prior to performing fusion operations on any high density polyethylene conduit to be installed.

Where high density polyethylene conduit is shown on the plans to join Type 3 conduit, mechanical fittings designed for joining polyethylene pipes to another material may be used. Mechanical fittings shall be pressure rated at not less than 400 kPa, and fully thrust restrained such that the fitting does not disjoin under longitudinal load of up to 35 kg.

INSTALLATION

High density polyethylene conduit shall be installed at underground locations only.

In addition to the conduit installation methods for Type 3 Conduit, as described in Section 86 of the Standard Specifications and in these special provisions, high density polyethylene conduit may be installed by Horizontal Directional Drilling (HDD) (per ASTM F1962 "Standard Guide for Use of Maxi-Horizontal Directional Drilling for Placement of Polyethylene Pipe or Conduit Under Obstacle, Including River Crossings") or "Directional Boring Method" as described elsewhere in these special provisions. Where there is a difference or conflict between requirements, the higher of the two standards shall apply.

Conduit bends, except factory bends, shall have a radius of not less than the manufacturer's recommended minimum bend radius. Where factory bends are not used, conduit shall be bent, without crimping or flattening, using the longest radius practicable.

Bending of high density polyethylene conduit shall be by methods recommended by the conduit manufacturer, and with equipment approved for the purpose. Equipment shall not expose conduit to direct flame.

Attention is directed to "Conduit" elsewhere in these special provisions regarding cleaning and sealing conduit.

The ends of high density polyethylene conduit shall be capped until the installation of cable is started.

A pull rope, conforming to Section 86-2.05C, "Installation," of the Standard Specifications shall be installed in conduits which are to receive future conductors

CERTIFICATES OF COMPLIANCE, MATERIALS RECEIVING INSPECTION AND MANUFACTURER'S DATA

In conformance with the provisions in Section 6-1.07, "Certificates of Compliance," a Certificate of Compliance shall be furnished to the Engineer for each type of high density polyethylene conduit furnished. The certificate shall also certify that the high density polyethylene conduit complies with the requirements of these special provisions, and shall include the resin material Cell Classification, unit mass of pipe, average pipe stiffness and date of manufacture.

Conduit, when delivered to the site, which exhibits damage in excess of 10% of the conduit wall thickness may be rejected by the Engineer. Conduit exhibiting damage which does not meet the manufacturer's recommendations for usable conduit may also be rejected by the Engineer. Conduit sections may be repaired if approved by the Engineer. Replacement or repair of rejected conduit shall be at the Contractor's expense.

Two copies of the manufacturer's product technical specification information shall be furnished to the Engineer at least two weeks subsequent to the start of the scheduled delivery.

Two copies of the manufacturer's test data for the delivered shipment shall be furnished to the Engineer at the time of the delivery.

10-3.07 PULL BOXES

Grout shall be placed in the bottom of pull boxes.

10-3.08 CONDUCTORS AND WIRING

Sensor lead-in cable splices shall be insulated by "Method B." Other splices of conductors shall be insulated by "Method B," or, at the Contractor's option, with heat-shrink tubing of the appropriate size after thoroughly painting the spliced conductors with electrical insulating coating. The completed splice shall be dipped in an electrical insulating coating.

The minimum insulation thickness, at any point, for Type USE, RHH or RHW wire shall be 1.0 mm for conductor sizes No. 14 to No. 10, inclusive, and 1.3 mm for No. 8 to No. 2, inclusive. The minimum insulation thickness, at any point, for Type THW and TW wires shall be 0.69 mm for conductor sizes No. 14 to No. 10, inclusive, 1.02 mm for No. 8, and 1.37 mm for No. 6 to No. 2, inclusive.

The ends of lead-in cables and sensor conductors shall be taped and made waterproof by dipping in an electrically insulating liquid to seal the ends prior to being installed in conduit and prior to being left overnight.

Sensor lead-in (SLI) cable shall conform to the RWIS Manufacturer's requirements and the following:

Filled Telephone Cable Type PE-39 shall be used in extending Surface Sensor and Sub-Surface Temperature Probe inside ducting or direct buried installations.

19 AWG, 6 pair, approximate O.D. is 13 mm, polypropylene or polyethylene insulation, polyethylene jacket, duct or direct burial.

The cable shield shall be aluminum, as recommended by the RWIS Manufacturer.

TELEPHONE CABLE

Telephone cable shall meet PE-39 Standard requirements and consist of four No. 18 conductors with braided copper shield and an outside jacket. Each conductor shall have a minimum of 16 tinned copper strands. Individual conductor insulation shall be rubber or thermoplastic, rated for 600 volts and color coded black, white, red and green. The jacket shall be neoprene, polyethylene or polyvinyl chloride with a nominal thickness of 0.890 mm. The outside jacket shall not exceed 8.90 mm.

Where shown on the plans, the Contractor shall install telephone cable between the modem located in the CCTV & Net. Cab RPU enclosure and the telephone demarcation cabinet without splices.

Approximately 1.3 m of cable shall be neatly coiled in the telephone demarcation cabinet. Telephone cable between telephone demarcation cabinet and telephone service point will be furnished and installed by the telephone service provider.

10-3.09 BONDING AND GROUNDING

Bonding and grounding shall conform to the provisions in Section 86-2.10, "Bonding and Grounding," of the Standard Specifications and these special provisions.

Bonding jumpers in standards with handholes and traffic pull box lid covers shall be attached by a UL listed lug using 4.5-mm diameter or larger brass or bronze bolts and shall run to the conduit or bonding wire in the adjacent pull box. The grounding jumper shall be visible after the standard has been installed and the mortar pad and cap have been placed on the foundation.

Standards without handholes shall have bonding accomplished by jumpers attached to UL listed ground clamps on each anchor bolt.

For slip base standards or slip base inserts, bonding shall be accomplished by jumpers attached to UL listed ground clamps on each anchor bolt, or a UL listed lug attached to the bottom slip base plate with a 4.5-mm diameter or larger brass or bronze bolt.

Equipment bonding and grounding conductors are required in conduits, except when the conduits contain combinations of loop lead-in cable, fiber optic cable, or signal interconnect cable. A No. 8 minimum, bare copper wire shall run continuously in circuits, except for series lighting circuits, where No. 6 bare copper wire shall run continuously. The bonding wire size shall be increased to match the circuit breaker size in conformance with the Code, or shall be as shown on the plans. Conduits to be installed for future conductors, may omit the copper wire.

Bonding of metallic conduits in metal pull boxes shall be by means of bonding bushings and bonding jumpers connected to the bonding wire running in the conduit system.

10-3.10 SERVICE

Type III-AF (Modified) service equipment enclosure assemblies shall be furnished by the Contractor.

Circuit breakers shall be the bus mounted type, mounted on energized clips. All circuit breakers shall be mounted vertically with the up position of the handle being the "ON" position.

Circuits with Model 510 changeable message signs shall have service equipment enclosures which have main busses and terminal lugs rated for 100A, minimum, and a No. 2 bare copper ground wire.

Each service shall be provided with up to 2 main circuit breakers which shall disconnect ungrounded service entrance conductors. Where the "Main" circuit breaker consists of 2 circuit breakers as shown on the plans or required in the special provisions, each of the circuit breakers shall have a minimum interrupting capacity of 10 000 A, rms.

Circuit breakers used as service disconnect equipment shall have a minimum interrupting capacity of 42 000 A, rms, for 120/240 V(ac) services and 30 000 A, rms, for 480 V(ac) services.

Type H service shall consist of a conduit and conductors with length and size as required by the serving utility company.

The neutral conductor shall run from the service equipment enclosure to the controller cabinet without splicing to any other neutral conductor.

The clearance between the bottom of the lowest circuit breaker and the bottom of the service equipment enclosure for a Type III-A series shall be 600 mm minimum.

Installation of a barrier type terminal block in service equipment enclosures is not required.

10-3.11 STATE-FURNISHED CONTROLLER ASSEMBLIES

The Model 170 controller assemblies, including controller unit, completely wired controller cabinet and inductive loop detector sensor units, but without anchor bolts, will be State-furnished as provided under "Materials" of these special provisions.

The Contractor shall construct each controller cabinet foundation as shown on the plans for Model 334 cabinets (including furnishing and installing anchor bolts), shall install the controller cabinet on the foundation, and shall make field wiring connections to the terminal blocks in the controller cabinet.

A listing of field conductor terminations, in each State-furnished controller cabinet, will be furnished free of charge to the Contractor at the site of the work.

State forces will maintain controller assemblies. The Contractor's responsibility for controller assemblies shall be limited to conforming to the provisions in Section 6-1.02, "State-Furnished Materials," of the Standard Specifications.

10-3.12 TRANSFORMERS

Transformers shall be the dry type, rated for continuous duty. Transformers shall be single phase dual primary and dual secondary configuration and shall be rated at the values shown on the plans. Transformers shall be the fully enclosed type with terminal blocks for the primary and secondary sides. Transformers shall be rated for no more than 115 degrees C temperature rise above a 40 degree C ambient under full load conditions and insulation systems rated for 180 degrees C. Transformer shall be operated at audible sound levels not exceed 45 db.

10-3.13 UNINTERRUPTIBLE POWER SUPPLY (UPS)

GENERAL

Th4e uninterruptible power supply system (UPS) shall include, but not be limited to the following: Inverter/Charger, Power Transfer Relay, batteries, a separate manually operated non-electronic Bypass Switch and all necessary hardware and interconnect wiring. The UPS shall provide reliable emergency power to a traffic operation system in the event of a power failure or interruption.

The enclosure for the UPS and the batteries shall be stainless steel weatherproof enclosure. The enclosure shall be GTAW welded construction with welding material specifically designed for the material to be welded. Enclosure shall have fully framed side hinged outer doors with swaged close tolerance sides for flush fit with drip lip and closed cell neoprene flange compressed gaskets. Front door shall incorporate a full-length piano hinge, pad-lockable draw latch (center area on door-latch side), and two pad-lockable welded-in place vandal-proof tabs (one upper area, one lower area on door-latch side, rated at 907 Kg, each). There shall be no expose nuts, bolts, screws, rivets or other fasteners on the exterior of the enclosure. UPS shall be mounted in an interior tilt out housing with 362 Kg rated stops.

Batteries shall be installed in fixed position framed trays for seismic safety and be readily accessible for maintenance. Batteries shall be mounted allowing airflow front and back. Enclosure can include one Transfer Bypass Switches for UPS. All switches must be panel mounted on interior dead front panel board. UV resistant plastic laminated nameplates shall identify all controls an majors components. A plastic covered wiring diagram will be attached to the inside of the front door. All components shall be factory wired and conform to required NEMA, NEC and UL standards. A chassis ground point shall be provided. Panel shall be UL 508 Industrial List. The Power Transfer Relay shall be internal to the Inverter/Charger. The Manual Bypass Switch shall be external to the Inverter/Charger.

The UPS shall be designed for outdoor applications, and shall conform to the requirements in Chapter 1, Section 8 of the "Transportation Electrical Equipment Specifications," (TEES) published by the Department.

OPERATION

The UPS shall provide a true sine-wave output with minimum 2000 Volt-Amp continuous capacity. UPS must provide for utility isolation when in operation. The minimum rating for wattage output will be 1500 watts. The UPS shall operate off-line, with transfer time of 30 ms or less, with battery condition indicator, with automatic test provisions, and with hotswappable batteries (all batteries in system). UPS will automatically recharge batteries from full discharged within 6 hours.

The maximum transfer time from loss of utility power to switchover to battery backed inverter power shall be 5 milliseconds.

The UPS shall provide the user with 3-sets of normally open (NO) and normally closed (NC) single-pole double throw (SPDT) relay contact closures, available on a panel-mounted terminal block, rated at a minimum 120 V/1 A, and labeled so as to identify each contact. The sets of NO/NC contacts may have separate or shared commons.

The first set of NO and NC contact closures shall be energized whenever the unit switches to battery power. Contact shall be labeled or marked "On Batt".

The second set of NO and NC contact closures shall be energized whenever the battery voltage approaches approximately 40% of remaining useful capacity. Contact shall be labeled or marked "Low Batt".

The third set of NO and NC contact closures shall be energized two hours after the unit switches to battery power. Contact shall be labeled or marked "Timer Output Relay".

Operating ambient air temperature range for both Inverter/Charger and Manual Bypass Switch shall be -37 °C to +74 °C. Both the Power Transfer Relay and Manual Bypass Switch shall be rated at 120 V (ac)/30 A for Relay and 30 A for Switch, minimum.

The UPS shall use a temperature-compensated battery charging system. The charging system shall compensate over a range of 2.5 mV/°C to 4.0 mV/°C per cell.

Batteries shall not be charged when the battery temperature exceeds 50 °C +/-3 °C.

UPS shall bypass the utility line power whenever the utility line voltage is outside of the following voltage range: 100 V (ac) (+/- 2 V (ac)) to 130 V (ac) (+/- 2 V (ac)).

When utilizing battery power, the UPS output voltage shall be between 110 V (ac) and 125 V (ac), pure sine wave output, \leq 3% THD, 60 Hz +/- 3Hz.

When the utility line power has been restored at above 92 V (ac) +/-2 V (ac) for more than 30 seconds, the UPS shall dropout of battery backup mode and return to utility line mode.

When the utility line power has been restored at below 145 V (ac) +/-2 V (ac) for more than 30 seconds, the UPS shall dropout of battery backup mode and return to utility line mode.

UPS shall be equipped to prevent a malfunction feedback to the cabinet or from feeding back to the utility service.

In the event of Inverter/Charger failure, battery failure, or complete battery discharge, the Power Transfer Relay shall revert to the normal state, where utility line power is reconnected to the cabinet.

Recharge time for the battery, from "protective low-cutoff" to 95% or more of full battery charge capacity, shall not exceed six (6) hours.

MOUNTING/CONFIGURATION

The Inverter/Charger shall be rack or shelf-mounted.

Power Transfer Relay and Manual Bypass Switch shall be mounted on interior dead front panel board.

All nameplates shall be screwed on phenolic engraved type. All wire terminating lugs shall be full wrap around type. All interconnect wiring provided between Manual Bypass Switch and cabinet terminal service block shall be not less than 2 m of No. 10 AWG wire.

Relay contact wiring provided for each set of NO/NC relay contact closure terminals shall be 2 m of No. 18 AWG wire.

Cabinet ventilation shall be 102 x 22 louvers top and bottom with encapsulated bug screens, cleanable filters and a 2.83 CMM fan to completely exchange air 25 times minimum per minute. Impact to the existing controller wiring shall be kept to a minimum and shall be limited to the re-routing of the existing connections for utility line power and establishing connections between the UPS and the neutral (AC-) bus and equipment ground bus.

BATTERY

Complete UPS, including batteries, shall fit inside a stainless steel weatherproof enclosure. Batteries shall be maintenance-free, type AGM/VRLA (Absorbed Glass Mat/ Valve Regulated Lead Acid). Batteries shall be independently pre-wired and individually fused. Batteries shall be furnished with heavy-duty 50 amp rated cabling. Batteries shall be lightweight for personnel safety and protection plus ease of installation and maintenance. Batteries with a weight of over 31.3 Kg are not acceptable.

Individual batteries shall be 12 V type, 105 A-hour maximum, and shall be easily replaced and commercially available as "off the shelf" items.

Batteries used for UPS shall consist of 4 batteries connected in series with a cumulative minimum rated voltage of 48 Volts

Batteries shall be a deep cycle, sealed prismatic lead-calcium based AGM/VRLA (Absorbed Glass Mat/Valve Regulated Lead Acid).

Batteries shall be certified by the manufacturer to operate over an ambient air temperature range of -37 °C to +74 °C.

The batteries shall be provided with appropriate interconnection wiring and corrosion-resistance mounting trays and/or brackets appropriate for the cabinet into which they will be installed.

Batteries shall indicate maximum recharge data and recharging cycle.

Battery interconnect wiring shall be via modular harness. Batteries shall be shipped with positive and negative terminals pre-wired with red and black cabling that terminates into a typical power-pole style connector. Harness shall be equipped with mating power-pole style connectors for batteries and a single, insulated plug-in style connection to the Inverter/Charger. Harness shall allow batteries to be quickly and easily connected in any order and shall be keyed and wired to ensure proper polarity and circuit configuration.

Battery terminals shall be covered and insulated so as to prevent accidental shorting.

MAINTENANCE, DISPLAYS, CONTROLS AND DIAGNOSTICS

The UPS shall include a display to indicate current battery charge status and conditions.

The UPS shall have lightning surge protection compliant with IEEE/ANSI C.62.41.

The UPS shall be equipped with an integral system to prevent battery from destructive discharge and overcharge.

The UPS shall be easily replaced with all needed hardware and shall not require any special tools for installation.

The UPS shall perform a self-test every two weeks to detect degraded batteries before they wear out. Through software, or the push of a button, self-test may be performed at anytime.

Manufacturer shall include two (2) sets of equipment lists, operation and maintenance manuals, and board-level schematic and wiring diagrams of the UPS, and the battery data sheets.

The manual shall conform to the requirements in Chapter 1, Section 1.2.4.2 of the "Transportation Electrical Equipment Specifications," (TEES) published by the Department.

OUALITY ASSURANCE

UPS shall be manufactured in accordance with a manufacturer quality assurance (QA) program. The QA program shall include two types of quality assurance: (1) Design quality assurance and (2) Production quality assurance. The production quality assurance shall include statistically controlled routine tests to ensure minimum performance levels of UPS units built to meet his specification and a documented process of how problems are to be resolved.

QA process and test results documentation shall be kept on file for a minimum period of seven years.

UPS designs not satisfying design qualification testing and the production quality assurance testing performance requirements described below shall not be labeled, advertised, or sold as conforming to this specification.

DESIGN QUALIFICATION TESTING

The manufacturer, or an independent testing lab hired by the manufacturer, shall perform design Qualification Testing on new UPS designs, and when a major design change has been implemented on an existing design. A major design change is defined as a design change (electrical or physical), which changes any of the performance characteristics of the system, or results in a different circuit configuration.

A quantity of two units for each design shall be submitted for Design Qualification Testing.

Test units shall be submitted to the Department's Office of Materials and Foundations, Electrical Testing Branch after the manufacturer's testing is complete.

Manufacturer's testing data shall be submitted with test units for Caltrans verification of Design Qualification Testing data.

Burn-In Requirement: The sample systems shall be energized for a minimum of 5 hours, with full load of 1500 W, at temperatures of +74°C and -37°C, excluding batteries, before performing any design qualification testing.

Any failure of the UPS, which renders the unit non-compliant with the specification after burn-in, shall be cause for rejection.

For Design Qualification Testing, all specifications will be measured including, but not limited to:

Runtime while in battery back-up mode, at full load.

Proper operation of all relay contact closures ("On-Batt", "Low-Batt" and "Timer Output Relay").

Inverter output voltage, frequency, harmonic distortion, and efficiency, when in battery back-up mode.

All utility mode and battery back-up mode transfer voltage levels when the utility line voltage is outside the required range and when it is restored.

Power transfer time from loss of utility power to switchover to battery backed inverter power.

Backfeed voltage to utility when in battery back-up mode.

IEEE/ANSI C.62.41 compliance.

Battery charging time.

Event counter and runtime meter accuracy.

PRODUCTION QUALITY CONTROL TESTING

Production Quality Control tests shall consist of all of the above listed tests and shall be performed on each new system prior to shipment. Failure to meet requirements of any of these tests shall be cause for rejection. The manufacturer shall retain test results for seven years.

Each UPS shall be given a minimum 100-hour burn-in period to catch any premature failures.

Each system shall be visually inspected for any exterior physical damage or assembly anomalies. Any defects shall be cause for rejection.

WARRANTY

Manufacturers shall provide a two (2) year factory-repair warranty for parts and labor on the UPS from date of acceptance by the State. Batteries shall be warranted for full replacement for two (2) years from the date of purchase.

PAYMENT

Full compensation for uninterruptible power supply shall be considered as included in the contract lump sum price paid for traffic operation system and no additional compensation will be allowed therefore.

10-3.14 FIBER OPTIC

CONDUIT

After fiber optic cables have been installed, the ends of conduits terminating in pull boxes shall be sealed with an approved type of sealing compound.

INNERDUCT

New innerduct shall be installed as specified on the plans. Each fiber optic cable shall be installed in its own innerduct. Innerduct consists of an extruded flexible annealed polyethylene tubing that is installed inside electrical conduit, and which in turn the fiber optic cable is installed. Innerduct within a conduit run shall be continuous without splices or joints. Unless otherwise shown on the plans, innerduct shall be nominal Size 35 inside diameter with wall thickness of 2300 μ m \pm 76 μ m, and shall meet the following requirements: Polyethylene for innerduct shall have a density of 0.955 \pm 0.005 g/cm3 (ASTM Standard D-1505), and shall conform to the applicable portions of ASTM Designations: D 3485, D 3035, D 2239, and D 2447, and the applicable portions of NEMA TC7 and TC2. Tensile yield strength shall be 22 753 kPa minimum (ASTM D-638). Walls shall be corrugated. The exterior of the duct shall be marked with sequential measurement markings every meter. The innerducts shall be shipped on reels and shall be covered with aluminized material to protect colors from UV deterioration during shipment and storage. Installation procedures shall conform to the procedures specified by the innerduct manufacturer.

CONDUIT AND INNERDUCT SEALING PLUGS

Unless otherwise noted, all conduits and innerducts shall have their ends sealed with commercial preformed plugs which prevent the passage of gas, dust and water into these conduits and their included innerducts. Sealing plugs shall be installed within each pull box and cabinet. Sealing plugs shall be removable and reusable. Plugs sealing innerducts, conductor or cable shall be the split type that permits installation or removal without removing conductors or cables. Sealing plugs that seal between the fiber optic conduits and innerduct shall seal the conduit and innerduct simultaneously with one self-contained assembly having an adjustable resilient filler of neoprene or silicone rubber clamped between backing ends and compressed with stainless steel hardware. To provide suitable sealing between the cable and the plug, split neoprene or silicone adapting sleeves shall be inserted within the body of the plug. Sealing plugs used to seal fiber optic conduits and

innerducts shall be capable of withstanding a pressure of 34.5 kPa. A sealing plug that seals an empty conduit or innerduct shall have an eye or other type of capturing device (on the side of the plug that enters the conduit) to attach onto the pull tape, so the pull tape will be easily accessible when the plug is removed.

DEFINITIONS

The following definitions shall apply to these special provisions:

- A. Active Component Link Loss Budget.—The active component link loss budget is the difference between the average transmitter launch power (in dBm) and the receiver maximum sensitivity (in dBm).
- B. BICSI.—Building Industry Consulting Services International.
- C. Connector.—A mechanical device used to align and join two fibers together to provide a means for attaching to and decoupling from a transmitter, receiver, or another fiber (patch panel).
- D. Connectorized.—The termination point of a fiber after connectors have been affixed.
- E. Connector Module Housing (CMH) .—A patch panel used to terminate singlemode fibers with most common connector types.
- F. Couplers.—Devices which mate fiber optic connectors to facilitate the transition of optical light signals from one connector into another. They are normally located within FDUs, mounted in panels. They may also be used unmounted, to join two simplex fiber runs.
- G. End-to-End Loss.—The maximum permissible end-to-end system attenuation is the total loss in a given link. This loss could be the actual measured loss, or calculated using typical (or specified) values. A designer should use typical values to calculate the end-to-end loss for a proposed link. This number will determine the amount of optical power (in dB) needed to meet the System Performance Margin.
- K. Fiber Distribution Frame (FDF) .—A rack mounted system that is usually installed in hubs or the Transportation Management Center (TMC), that may consist of a standard equipment rack, fiber routing guides, horizontal jumper troughs and Fiber Distribution Units (FDU). The FDF serves as the termination and interconnection of passive fiber optic components from cable breakout, for connection by jumpers, to the equipment.
- H. Fiber Distribution Unit (FDU) .—An enclosure or rack mountable unit containing both a patch panel with couplers and splice tray(s). The unit's patch panel and splice trays may be integrated or separated by a partition.
- I. F/O.—Fiber optic.
- J. FOOP.—Fiber optic outside plant cable.
- K. FOTP.—Fiber optic test procedure(s) as defined by TIA/EIA standards.
- L. Jumper.—A short cable, typically one meter or less, with connectors on each end, used to join two CMH couplers or a CMH to active electronic components.
- M. Light Source.—Portable fiber optic test equipment that, when coupled with a power meter, is used to perform end-to-end attenuation testing. It contains a stabilized light source operating at the wavelength of the system under test.
- N. Link.—A passive section of the system, the ends of which are connectorized. A link may include splices and couplers.
- O. Loose Tube Cable.—Type of cable construction in which fibers are placed in buffer tubes to isolate them from outside forces (stress). A flooding compound or material is applied to the interstitial cable core to prevent water migration and penetration. This type of cable is primarily for outdoor applications.
- P. Optical Time Domain Reflectometer (OTDR) —Fiber optic test equipment similar in appearance to an oscilloscope that is used to measure the total amount of power loss in a F/O cable between two points. It provides a visual and printed display of the losses associated with system components such as fiber, splices and connectors.
- O. Optical Attenuator.—An optical element that reduces the intensity of a signal passing through it.
- R. Patchcord.—A term used interchangeably with "jumper".
- S. Patch Panel.—A precision drilled metal frame containing couplers used to mate two fiber optic connectors.
- T. Pigtail.—A short optical fiber permanently attached to a source, detector, or other fiber optic device.
- U. Power Meter.—Portable fiber optic test equipment that, when coupled with a light source, is used to perform end-toend attenuation testing. It contains a detector that is sensitive to light at the designed wavelength of the system under test. Its display indicates the amount of optical power being received at the end of the link.
- V. Segment.—A section of F/O cable that is not connected to any active device and may or may not have splices per the design.
- W. SMFO.—Singlemode Fiber Optic Cable.
- X. Splice.—The permanent joining of two fiber ends using a fusion splicer.
- Y. Splice Module Housing (SMH) .—A unit that stores splice trays as well as pigtails and short cable lengths. The unit allows splitting or routing of fiber cables to or from multiple locations.
- Z. Splice Tray.—A container used to organize and protect spliced fibers.

- AA. System Performance Margin.—A calculation of the overall "End to End" permissible attenuation from the fiber optic transmitter (source) to the fiber optic receiver (detector). The system performance margin should be at least 6 dB. This includes the difference between the active component link loss budget, the passive cable attenuation (total fiber loss) and the total connector/splice loss.
- AB. Tight Buffered, Non-Breakout Cable (Tight Buffer Cable).—Type of cable construction where each glass fiber is tightly buffered (directly coated) with a protective thermoplastic coating to 900 µm (compared to 250 µm for loose tube fibers).

FIBER OPTIC OUTSIDE PLANT CABLE

General

Each fiber optic outside plant cable (FOOP) for this project shall be all dielectric, gel filled or water-blocking material, underground duct type, with loose buffer tubes and shall conform to these special provisions. Cables with single mode fibers shall contain 6 single mode (SM) dual-window (1310 nm and 1550 nm) fibers. The optical fibers shall be contained within loose buffer tubes. The loose buffer tubes shall be stranded around an all dielectric central member. Aramid yarn and/or fiberglass shall be used as a primary strength member, and a polyethylene outside jacket shall provide for overall protection.

All fiber optic (F/O) cable on this project shall be from the same manufacturer, who is regularly engaged in the production of this material.

The cable shall be qualified as compliant with RUS Federal Rule 7CFR1755.900.

Fiber Characteristics

Each optical fiber shall be glass and consist of a doped silica core surrounded by concentric silica cladding. All fibers in the buffer tube shall be usable fibers, and shall be sufficiently free of surface imperfections and occlusions to meet the optical, mechanical, and environmental requirements of these specifications. The required fiber grade shall reflect the maximum individual fiber attenuation, to guarantee the required performance of each and every fiber in the cable.

The coating shall be a dual layered, UV cured acrylate. The coating shall be mechanically or chemically strippable without damaging the fiber.

The cable shall comply with the optical and mechanical requirements over an operating temperature range of -40°C to +70°C. The cable shall be tested in accordance with EIA-455-3A (FOTP-3), "Procedure to Measure Temperature Cycling Effects on Optical Fiber, Optical Cable, and Other Passive Fiber Optic Components." The change in attenuation at extreme operational temperatures (-40°C to +70°C) for single mode fiber shall not be greater than 0.20 dB/km, with 80 percent of the measured values no greater than 0.10 dB/km. The single mode fiber measurement is made at 1550 nm.

For all fibers the attenuation specification shall be a maximum attenuation for each fiber over the entire operating temperature range of the cable.

Single mode fibers within the finished cable shall meet the requirements in the following table:

Fiber Characteristics Table		
Parameters	Singlemode	
Туре	Step Index	
Core diameter	8.3 µm (nominal)	
Cladding diameter	125 μm ±1.0 μm	
Core to Cladding Offset	≤0.8 μm	
Coating Diameter	250 μm ±15 μm	
Cladding Non-circularity defined as:	≤1.0%	
[1-(min. cladding dia ÷max. cladding dia.)]x100		
Proof/Tensile Test	345 MPa, min.	
Attenuation: (-40°C to +70°C)		
@1310 nm	≤0.4 dB/km	
@1550 nm	≤0.3 dB/km	
Attenuation at the Water Peak	≤2.1 dB/km @ 1383 ±3 nm	
Chromatic Dispersion:		
Zero Dispersion Wavelength	1301.5 to 1321.5 nm	
Zero Dispersion Slope	$\leq 0.092 \text{ ps/(nm}^2 * \text{km})$	
Maximum Dispersion:	≤3.3 ps/(nm*km) for 1285 – 1330 nm	
	<18 ps/(nm*km) for 1550 nm	
Cut-Off Wavelength	<1260 nm	
Mode Field Diameter	9.3 ±0.5 μm at 1300 nm	
(Petermann II)	$10.5 \pm 1.0 \ \mu m$ at 1550 nm	

Color Coding

In buffer tubes containing multiple fibers, each fiber shall be distinguishable from others in the same tube by means of color coding according to the following:

- 1. Blue (BL)
- 2. Orange (OR)
- 3. Green (GR)
- 4. Brown (BR)
- 5. Slate (SL)
- 6. White (WT)

These colors shall be targeted in accordance with the Munsell color shades and shall meet EIA/TIA-598 "Color Coding of Fiber Optic Cables."

The color formulation shall be compatible with the fiber coating and the buffer tube filling compound, and be heat stable. It shall not fade or smear or be susceptible to migration and it shall not affect the transmission characteristics of the optical fibers and shall not cause fibers to stick together.

Cable Construction

- A. The fiber optic cable shall consist of, but not be limited to, the following components:
 - 1. Buffer tubes
 - 2. Central member
 - 3. Filler rods
 - 4. Stranding
 - 5. Core and cable flooding
 - 6. Tensile strength member
 - 7. Ripcord
 - 8. Outer jacket

B. Buffer Tubes

Clearance shall be provided in the loose buffer tubes between the fibers and the inside of the tube to allow for expansion without constraining the fiber. The fibers shall be loose or suspended within the tubes. The fibers shall not adhere to the inside of the buffer tube. Each buffer tube shall contain a maximum of 6 fibers.

The loose buffer tubes shall be extruded from a material having a coefficient of friction sufficiently low to allow free movement of the fibers. The material shall be tough and abrasion resistant to provide mechanical and environmental protection of the fibers, yet designed to permit safe intentional "scoring" and breakout, without damaging or degrading the internal fibers.

Buffer tube filling compound shall be a homogeneous hydrocarbon-based gel with anti-oxidant additives and used to prevent water intrusion and migration. The filling compound shall be non-toxic and dermatologically safe to exposed skin. It shall be chemically and mechanically compatible with all cable components, non-nutritive to fungus, non-hygroscopic and electrically non-conductive. The filling compound shall be free from dirt and foreign matter and shall be readily removable with conventional nontoxic solvents.

Buffer tubes shall be stranded around a central member by a method, such as the reverse oscillation stranding process, that will prevent stress on the fibers when the cable jacket is placed under strain.

3. Central Member

The central member which functions as an anti-buckling element shall be a glass reinforced plastic rod with similar expansion and contraction characteristics as the optical fibers and buffer tubes. To ensure the proper spacing between buffer tubes during stranding, a symmetrical linear overcoat of polyethylene may be applied to the central member to achieve the optimum diameter.

4. Filler Rods

Fillers may be included in the cable to maintain the symmetry of the cable cross-section. Filler rods shall be solid medium or high density polyethylene. The diameter of filler rods shall be the same as the outer diameter of the buffer tubes.

5. Stranding

Completed buffer tubes shall be stranded around the overcoated central member using stranding methods, lay lengths and positioning such that the cable shall meet mechanical, environmental and performance specifications. A polyester binding shall be applied over the stranded buffer tubes to hold them in place. Binders shall be applied with sufficient tension to secure the buffer tubes to the central member without crushing the buffer tubes. The binders shall be non-hygroscopic, non-wicking (or rendered so by the flooding compound), and dielectric with low shrinkage.

6. Core and Cable Flooding

The cable core interstices shall contain a water blocking material, to prevent water ingress and migration. The water blocking material shall be either a polyolefin based compound which fills the cable core interstices, or an absorbent polymer, which fills voids and swells to block the ingress of water. The flooding compound or material shall be homogeneous, non-hygroscopic, electrically non-conductive, and non-nutritive to fungus. The compound or material shall also be nontoxic, dermatologically safe and compatible with all other cable components.

7. Tensile Strength Member

Tensile strength shall be provided by high tensile strength aramid yarns and/or fiberglass which shall be helically stranded evenly around the cable core and shall not adhere to other cable components.

8. Ripcord

The cable shall contain at least one ripcord under the jacket for easy sheath removal.

9. Outer Jacket

The jacket shall be free of holes, splits, and blisters and shall be medium or high density polyethylene (PE), or medium density cross-linked polyethylene with minimum nominal jacket thickness of 1 mm \pm 0.076 mm. Jacketing material shall be applied directly over the tensile strength members and water blocking material and shall not adhere to the aramid and/or fiberglass strength material. The polyethylene shall contain carbon black to provide ultraviolet light protection and shall not promote the growth of fungus.

The jacket or sheath shall be marked with the manufacturer's name, the words "Optical Cable", the number of fibers, "SM", year of manufacture, and sequential measurement markings every meter. The actual length of the cable shall be within -0/+1 percent of the length marking. The marking shall be in a contrasting color to the cable jacket. The height of the marking shall be $2.5 \text{ mm} \pm 0.2 \text{ mm}$.

General Cable Performance Specifications

The recommendation for the fiber optic cable manufactures are:

- 1. Alcatel (singlemode EZ Span All Dielectric Self Support ADSS Loose Tube Cable) or
- 2. Lucent (singlemode DNX Dielectric Sheath LXE Lightpack Cable) or equal.

If other fiber optic cables are proposed, they shall be tested subjectively by independent lab facility as follows:

The F/O cable shall withstand water penetration when tested with a one meter static head or equivalent continuous pressure applied at one end of a one meter length of filled cable for one hour. No water shall leak through the open cable end. Testing shall be done in accordance with EIA-455-82 (FOTP-82), "Fluid Penetration Test for Fluid-Blocked Fiber Optic Cable."

A representative sample of cable shall be tested in accordance with EIA/TIA-455-81 (FOTP-81), "Compound Flow (Drip) Test for Filled Fiber Optic Cable". No preconditioning period shall be conducted. The cable shall exhibit no flow (drip or leak) at 70°C as defined in the test method.

Crush resistance of the finished F/O cables shall be 220 N/mm applied uniformly over the length of the cable without showing evidence of cracking or splitting when tested in accordance with EIA-455-41 (FOTP-41), "Compressive Loading Resistance of Fiber Optic Cables". The average increase in attenuation for the fibers shall be \leq 0.10 dB at 1550 nm (single mode) for a cable subjected to this load. The cable shall not exhibit any measurable increase in attenuation after removal of load. Testing shall be in accordance with EIA-455-41 (FOTP-41), except that the load shall be applied at the rate of 3 mm to 20 mm per minute and maintained for 10 minutes.

The cable shall withstand 25 cycles of mechanical flexing at a rate of 30 ± 1 cycles/minute. The average increase in attenuation for the fibers shall be ≤ 0.20 dB at 1550 nm (single mode) at the completion of the test. Outer cable jacket cracking or splitting observed under 10x magnification shall constitute failure. The test shall be conducted in accordance with EIA-455-104 (FOTP-104), "Fiber Optic Cable Cyclic Flexing Test," with the sheave diameter a maximum of 20 times the outside diameter of the cable. The cable shall be tested in accordance with Test Conditions I and II of (FOTP-104).

The cable shall withstand 20 impact cycles, with a total impact energy of 5.9 N•m. Impact testing shall be conducted in accordance with TIA/EIA-455-25B (FOTP-25) "Impact Testing of Fiber Optic Cables and Cable Assemblies." The average increase in attenuation for the fibers shall be <0.20 dB at 1550 nm for single mode fiber. The cable shall not exhibit evidence of cracking or splitting.

The finished cable shall withstand a tensile load of 2700 N without exhibiting an average increase in attenuation of greater than 0.20 dB (single mode). The test shall be conducted in accordance with EIA-455-33 (FOTP-33), "Fiber Optic Cable Tensile Loading and Bending Test." The load shall be applied for one-half hour in Test Condition II of the EIA-455-33 (FOTP-33) procedure.

The cost of the testing of any proposed optical fiber cable shall be borne by the Contractor. The Contractor shall submit to the Engineer the original documents for fiber optic cable test compliant, the fiber optic manufacture catalogue, and its samples and test results.

Packaging and Shipping Requirements

Documentation of compliance to the required specifications shall be provided to the Engineer prior to ordering the material.

Attention is directed to "Fiber Optic Testing," elsewhere in these special provisions.

The completed cable shall be packaged for shipment on reels. The cable shall be wrapped in a weather and temperature resistant covering. Both ends of the cable shall be sealed to prevent the ingress of moisture.

Each end of the cable shall be securely fastened to the reel to prevent the cable from coming loose during transit. Four meters of cable length on each end of the cable shall be accessible for testing.

Each cable reel shall have a durable weatherproof label or tag showing the manufacturer's name, the cable type, the actual length of cable on the reel, the Contractor's name, the contract number, and the reel number. A shipping record shall also be included in a weatherproof envelope showing the above information and also include the date of manufacture, cable characteristics (size, attenuation, bandwidth, etc.), factory test results and any other pertinent information.

The minimum hub diameter of the reel shall be at least thirty times the diameter of the cable. The F/O cable shall be in one continuous length per reel with no factory splices in the fiber. Each reel shall be marked to indicate the direction the reel should be rolled to prevent loosening of the cable.

Installation procedures and technical support information shall be furnished at the time of delivery.

LABELING

General

The Contractor shall label all fiber optic cabling in a permanent consistent manner. All tags shall be of a material designed for long term permanent labeling of fiber optic cables and shall be marked with permanent ink on non-metal types, or embossed lettering on metal tags. Metal tags shall be constructed of stainless steel. Non-metal label materials shall be approved by the Engineer. Labels shall be affixed to the cable per the manufacturer's recommendations and shall not be affixed in a manner which will cause damage to the fiber. Handwritten labels shall not be allowed. Each fiber optic cable shall have labels attached that identify the source and destination of the cable. Labels shall be attached to the cables at all pull boxes and at each end of the cable.

CABLE INSTALLATION

Installation procedures shall be in conformance with the procedures specified by the cable manufacturer for the specific cable being installed. The Contractor shall submit the manufacturer's recommended procedures for pulling fiber optic cable at least 20 working days prior to installing cable. Mechanical aids may be used provided that a tension measuring device, and a break away swivel are placed in tension to the end of the cable. The tension in the cable shall not exceed 2225 N or the manufacturer's recommended pulling tension, whichever is less.

During cable installation, the bend radius shall be maintained at a minimum of twenty times the outside diameter. The cable grips for installing the fiber optic cable shall have a ball bearing swivel to prevent the cable from twisting during installation.

F/O cable shall be installed using a pull tape conforming to the provisions described under "conduit" elsewhere in these special provisions. Contractor's personnel shall be stationed at each pull box through which the cable is to be pulled to lubricate and prevent kinking or other damage.

F/O cable shall be installed between cabinets without splices.

Only one F/O cable shall be installed in each innerduct. Pulling a separate F/O cable into a spare duct to replace damaged fiber will not be allowed.

At the Contractor's option, the fiber optic cable may be installed using the air blown method. The fiber installation equipment must incorporate a mechanical drive unit or pusher, which feeds cable into the pressurized innerduct to provide a sufficient push force on the cable, which is coupled with the drag force created by the high-speed airflow. The unit must be equipped with controls to regulate the flow rate of compressed air entering the duct and any hydraulic or pneumatic pressure applied to the cable. It must accommodate longitudinally ribbed, or smooth wall ducts from nominal 16 mm to 51 mm inner diameter. Mid assist or cascading of equipment must be for the installation of long cable runs. The equipment must incorporate safety shutoff valves to disable the system in the event of sudden changes in pneumatic or hydraulic pressure.

The equipment must not require the use of a piston or any other air capturing device to impose a pulling force at the front end of the cable, which also significantly restricts the free flow of air through the innerduct. It must incorporate the use of a counting device to determine the speed of the cable during installation and the length of the cable installed.

SPLICING

Field splices shall be done in cabinets.

Unless otherwise specified, fiber splices shall be the fusion type. The mean splice loss shall not exceed 0.07 dB per splice. The mean splice loss shall be obtained by measuring the loss through the splice in both directions and then averaging the resultant values.

All splices shall be protected with a metal reinforced thermal shrink sleeve.

The individual fibers shall be looped one full turn within the splice tray to avoid micro bending. A 45 mm minimum bend radius shall be maintained during installation and after final assembly in the optical fiber splice tray. Each bare fiber shall be individually restrained in a splice tray. The optical fibers in buffer tubes and the placement of the bare optical fibers in the splice tray shall be such that there is no discernable tensile force on the optical fiber.

Splice trays in the splice closure shall conform to the following:

- A. Accommodate up to 6 fusion splices
- B. Place no stress on completed splices within the tray
- C. Snap-on hinge cover
- D. Buffer tubes securable with channel straps

The splice tray shall be secured by a bolt through the center of the tray in the fiber termination unit.

PASSIVE CABLE ASSEMBLIES AND COMPONENTS

The F/O cable assemblies and components shall be compatible components, designed for the purpose intended, and manufactured by a company regularly engaged in the production of material for the fiber optic industry. All components or assemblies shall be best quality, non-corroding, with a design life of at least 20 years.

The cable assemblies and components manufacturer shall be ISO9001 registered.

FIBER OPTIC CABLE TERMINATIONS

General

All components shall be the size and type required for the specified fiber.

Cable Termination

The jacketed cable shall be lashed with tie wraps to the rack prior to entering the FDU. The cable shall also be tiewrapped to the inside of the FDU near the point of entry. At the FDU, the cable jacket of the outside plant cable, shall be removed exposing the aramid yarn, filler rods, and buffer tubes. The exposed length of the buffer tubes shall be at least the length recommended by the FDU manufacturer which allows the tubes to be secured to the splice trays. Each buffer tube shall be secured to the splice tray in which it is to be spliced. The remainder of the tube shall be removed to expose sufficient length of the fibers in order to properly install on the splice tray, as described in "Splicing," elsewhere in these special provisions

When applicable, moisture blocking gel shall be removed from the exposed buffer tubes and fibers. The transition from the buffer tube to the bundle of jacketed fibers shall be treated by an accepted procedure for sleeve tubing, shrink tube and silicone blocking of the transition to prevent future gel leak. Manufacturer directions shall be followed to ensure that throughout the specified temperature range gel will not flow from the end of the buffer tube. The individual fibers shall be stripped and prepared for splicing.

Factory terminated pigtails shall then be spliced and placed in the splice tray.

All fibers inside a fiber optic cable entering a Fiber Distribution Unit (FDU) shall be terminated. Attention is directed to "Fiber Distribution Unit" elsewhere in these special provisions.

Distribution Interconnect Package

Distribution involves connecting the fibers to the active electronic components—. The distribution interconnect package consists of FDUs with connector panels, couplers, splice trays, fiber optic pigtails and cable assemblies with connectors. The distribution interconnect package shall be assembled and tested by a company that is regularly engaged in the assembly of these packages. Attention is directed to "Fiber Optic Testing" elsewhere in these special provisions. All distribution components shall be products of the same manufacturers, who are regularly engaged in the production of these components, and the respective manufacturers shall have quality assurance programs.

Fiber Optic Cable Assemblies and Pigtails

1. General

Cable assemblies (jumpers and pigtails) shall be products of the same manufacturer. The cable used for cable assemblies shall be made of fiber meeting the performance requirements of these special provisions for the F/O cable being connected.

2. Pigtails

Pigtails shall be of simplex (one fiber) construction, in 900 μ m tight buffer form, surrounded by aramid for strength, with a PVC jacket with manufacturer identification information, and a nominal outer jacket diameter of 3 mm. Pigtails shall be suitable for operation over a temperature range of -20 to +70 degrees Celsius. Single mode simplex cable jackets shall be yellow in color. All pigtails shall be factory terminated and tested and at least one meter in length.

3. Jumpers

Jumpers may be of simplex or duplex design. Duplex jumpers shall be of duplex round cable construction, and shall not have zipcord (siamese) construction. All jumpers shall be at least 2 meters in length, sufficient to avoid stress and allow orderly routing. Jumpers used for connecting the FDU to the Fiber Optic Transmitter or Receiver shall have SC connectors at the FDU and ST connectors at the Fiber Optic Transmitter or Receiver.

The outer jacket of duplex jumpers shall be colored according to the single mode color (yellow) specified above. The two inner simplex jackets shall be contrasting colors to provide easy visual identification for polarity.

4. Connectors

Connectors at the FDU shall be of the ceramic ferrule SC type for SM. Outdoor SC connector body housing shall be glass reinforced polymer.

The associated coupler shall be of the same material as the connector housing.

F/O connectors in the FDU shall be the 2.5 mm SC connector ferrule type with Zirconia Ceramic material with a Hyper PC polish tip. F/O connectors at the transmotters and receivers shall be ST type with a Hyper PC polish tip.

The connector operating temperature range shall be -40°C to +70°C. Insertion loss shall not exceed 0.4 dB for single mode, and the return reflection loss on single mode connectors shall be at least -55 dB. Connection durability shall be less than a 0.2 dB change per 500 mating cycles per EIA-455-21A (FOTP-21). All terminations shall provide a minimum 222 N pull out strength. Factory test results shall be documented and submitted to the Engineer prior to installing any of the connectors. Single mode connectors shall have a yellow color on the body and/or boot that renders them easily identifiable.

Field terminations shall be limited to splicing of cables to factory connectorized SC pigtails.

Fiber Distribution Unit

The Contractor shall furnish and install all components to terminate the incoming fiber optic communication cables.

FDU Type	Accomodates Termination of
A	6 SMFO fibers

The fiber distribution unit (FDU) shall be of the slide out drawer type construction and shall include the following:

- 1. Overall drawer housing shall completely enclose the top and sides of the drawer.
- 2. The front of the drawer shall contain a patch panel to terminate 6single mode fibers with SC type connector feed through couplers.
- 3. Ability to connect to the patch panel connectors without sliding out the drawer.

Strain relief shall be provided for the incoming fiber optic cable. Cable accesses shall have rubber grommets or similar material to prevent the cable from coming in contact with bare metal. All fibers shall be terminated on the patch panel in the FDU

Brackets shall be provided within the drawer to spool the incoming fiber a minimum of two turns, each turn shall not be less than 300 mm, before separating out individual fibers to the splice tray.

The FDU shall be 482 mm rack mountable.

The FDU shall not exceed 44.45 mm in height and 380 mm in depth.

ACTIVE ASSEMBLIES AND COMPONENTS

The F/O active assemblies and components shall be compatible components, designed for the purpose intended, and manufactured by a company regularly engaged in the production of material for the fiber optic industry. All components or assemblies shall be best quality, non-corroding, with a design life of at least 20 years. Fiber optic connections shall be of the ST type with Hyper PC polish tips.

Active assemblies shall consist of the fiber optic transmitter assembly and the fiber optic receiver assemblies,

The fiber optic transmitter assembly shall consist of the module shelf, power supply, and 2 transmitter modules.

Each fiber optic receiver assemblies shall consist of a module shelf, power supply, receiver module, and relay module.

Module shelf

Module shelf shall mount in a standard EIA 482 mm rack. The shelf shall be prewired to edge connectors and shall have rear mounted terminal blocks with 10-32 screw type terminals. The shelf shall house the power supply and modules.

Power supply

Power supply shall mount in the module shelf and shall operate on 120 volts plus or minus 10%, 60 Hz input power and shall output 12 volts dc and 5 volts dc, with a maximum ripple of 1%, for use by the plug-in modules, Output power shall be 15 watts minimum. Power supply shall operate over a temperature range of 0-50 degrees C. Power supply shall have integral over voltage and short circuit protection.

Transmitter Module

Each transmitter module shall be a plug-in type module which mounts in the module shelf. Transmitter shall be capable of accepting 16 dry contact closure inputs. The transmitter shall convert the contact closures to a serial word and transmit the data via a fiber optic link. The fiber optic connector on the transmitter shall be an ST type connector with a Hyper PC polish tip suitable for use with single mode fiber optic cable. The output of the transmitter shall be a fiber optic signal at 1300 nm. Transmitter output power shall be 10 db minimum. Transmitter shall have LED indicators to show the status of the individual inputs and the sync and data status of the fiber optic link. Transmitter module shall operate on +12 volts dc and +5 volts dc supplied by the power supply and shall operate over a temperature range of 0-50 degrees C.

Receiver Module

Two (2) receiver modules shall be a plug-in type module which mounts in the module shelf. Receiver shall be capable of accepting a serial word over a fiber optic link. The receiver shall convert the serial word to 16 discrete outputs for use by the relay module. The fiber optic connector on the receiver shall be an ST type connector with a Hyper PC polish tip suitable for use with single mode fiber optic cable. The input to the receiver shall be a fiber optic signal at 1300 nm. Receiver sensitivity shall be -34 db minimum. Receiver shall have LED indicators to show the sync, data, and error status of the fiber optic link. Receiver module shall operate on +12 volts dc and +5 volts dc supplied by the power supply and shall operate over a temperature range of 0-50 degrees C.

Relay Module

Each relay module shall be a plug-in type module which mounts in the module shelf. Relay module shall accept up to 10 discrete inputs from the receiver module and output 10 dry relay contact closures. Each relay contact shall be rated for 100 VA at 120 volts, 60 Hz. Each relay module shall have LED indicators to show the status of the individual relays. Relay module shall operate on +12 volts dc supplied by the power supply and shall operate over a temperature range of 0-50 degrees C.

FIBER OPTIC TESTING

General

Testing shall include the tests on elements of the passive fiber optic components: (1) at the factory, (2) after delivery to the project site but prior to installation, (3) after installation but prior to connection to any other portion of the system. The Contractor shall provide all personnel, equipment, instrumentation and materials necessary to perform all testing. The Engineer shall be notified two working days prior to all field tests. The notification shall include the exact location or portion of the system to be tested.

Documentation of all test results shall be provided to the Engineer within 2 working days after the test involved.

A minimum of 15 working days prior to arrival of the cable at the site, the Contractor shall provide detailed test procedures for all field testing for the Engineer's review and approval. The procedures shall include the tests involved and how the tests are to be conducted. Included in the test procedures shall be the model, manufacturer, configuration, calibration and alignment procedures for all proposed test equipment.

Factory Testing

Documentation of compliance with the fiber specifications as listed in the Fiber Characteristics Table shall be supplied by the original equipment manufacturer. Before shipment, but while on the shipping reel, 100 percent of all fibers shall be tested for attenuation. Copies of the results Documentation shall be (1) maintained on file by the manufacturer with a file identification number for a minimum of seven years, (2) attached to the cable reel in a waterproof pouch, and (3) submitted to the Contractor and to the Engineer.

System Cable Verification At Completion

1. Power Meter and Light Source

100 percent of the fiber links shall be tested end to end with a power meter and light source, in accordance with EIA Optical Test Procedure 171 and in the same wavelengths specified for the OTDR tests. Index matching gel shall not be allowed in connectors during testing. These tests shall be conducted in both directions. As shown in Appendix A, the Insertion Loss (1C) shall be calculated. Test results shall be recorded, compared, and filed with the other recordings of the same links. Test results shall be submitted to the Engineer. These values shall be recorded in the Cable Verification Worksheet in Appendix A.

2. OTDR Testing

Once the passive cabling system has been installed and is ready for activation, 100 percent of the fibers shall be tested with the OTDR for attenuation at wavelengths of both 1310 nm and 1550 nm. Index matching gel shall not be allowed in connectors during testing. OTDR testing shall be performed in both directions (bidirectional), on all fibers. Test results shall be generated from software of the test equipment, recorded, dated, compared and filed with previous copies. A hard copy printout and a electronic copy on a DOS based 89 mm diskette of traces and test results shall be submitted to the Engineer. The average of the two losses shall be calculated, and recorded in the Cable Verification Worksheet in Appendix A. The OTDR shall be capable of recording and displaying anomalies of at least 0.02 dB.All connector losses must be displayed on the OTDR traces.

3. Cable Verification Worksheet

The Cable Verification Worksheet shown in Appendix A shall be completed for all links in the fiber optic system, using the data gathered during cable verification. The completed worksheets shall be included as part of the system documentation.

4. Test Failures

If the link loss measured from the power meter and light source exceeds the calculated link loss, or the actual location of the fiber ends does not agree with the expected location of the fiber ends (as would occur with a broken fiber), the fiber optic link will not be accepted. The unsatisfactory segments of cable, or splices shall be replaced with a new segment of cable or splice at the Contractor's expense. The OTDR testing, power meter and light source testing and Cable Verification Worksheet shall be completed for the repaired link to determine acceptability. Copies of the test results shall be submitted to the Engineer. The removal and replacement of a segment of cable shall be interpreted as the removal and replacement of a single contiguous length of cable connecting two splices and two connectors. The removal of a small section containing the failure and therefore introducing new unplanned splices, will not be allowed.

Passive Component Package Testing and Documentation

All components in the passive component package (FDUs, pigtails, jumpers, couplers, and splice trays) shall be from a manufacturer who is ISO9001 registered.

In developing the passive component package, each connector termination (pigtail, or jumper) shall be tested for insertion attenuation loss using an optical power meter and source. In addition, all single mode terminations shall be tested for return reflection loss. These values shall meet the loss requirements specified earlier and shall be recorded on a tag attached to the pigtail or jumper.

Once an assembly is complete, the manufacturer shall visually verify all tagging of loss values is complete. As a final quality control measure, the manufacturer shall do an "end to end" optical power meter/light source test from pigtail end to end to the terminating point assuring continuity and overall attenuation loss values.

The final test results shall be recorded, along with previous individual component values, on a special form assigned to each FDU. The completed form shall be dated and signed by the Manufacturer's Quality Control supervisor. One copy of this form will be attached in a plastic envelope to the assembled FDU unit. Copies will be provided separately to the Contractor and to the Engineer, and shall also be maintained on file by the manufacturer or supplier.

The assembled and completed FDU unit shall then be protectively packaged for shipment to the Contractor for installation.

Fiber Optic System Performance Margin Design Criteria

The installed system performance margin shall be at least 6 dB for every link. If the design system performance margin is less than 6 dB, the Engineer shall be notified and informed of the Contractor's plan to meet that requirement.

Active Component Testing

The transmitters and receivers shall be tested with a power meter and light source, to record the transmitter average output power (dBm) and receiver sensitivity (dBm). These values shall be recorded in the Fiber System Performance Margin Calculations Worksheet in Appendix B, section C, number 6.

PAYMENT

Full compensation for fiber optic shall be considered as included in the contract lump sum price paid for traffic operations system and no additional compensation will be allowed therefore.

APPENDIX A

End-to-End Attenuation (Power Meter and Light Source) Testing and OTDR Testing

Contract No.	Contractor:		
Operator:	Date:		
Link Number:	Fiber Number:		
Test Wavelength (Circle one):	1310 nm 1550 nm		
Expected Location of fiber end	ds: End 1: End 2:		
Power Meter and Light Source Power In: Output Power: Insertion Loss [1A - 1B]:	e Test Results:	dBm dBm dB	1A 1B 1C
OTDR Test Results: Forward Loss: Reverse Loss: Average Loss [(2A + 2B).	/2]:	dB dB dB	2A 2B 2C
To Be Completed by Caltrans: Resident Engineer's Signature Cable Link Accepted:			

APPENDIX B Fiber System Performance Margin Calculations Worksheet

A. Calculate the Passive Cable Attenuation

Calculate Fiber Loss at Operating Wavelength: nm	Cable Distance (times) Individual Fiber Loss (equal) @ 1310 nm (0.4 dB/km) @ 1550 nm (0.3 dB/km)	km xdB/km=
	Total Fiber Loss:	dB

B. Calculate the Total Connector/Splice Loss

2. Calculate Connectors/couplers	Individual Connector Loss (times)		
Loss:	Number of Connector Pairs	0.4 dB x =	
(exclude Tx and Rx connectors)	(equal)		
	Total Connector Loss:		dB
3. Calculate Splice Loss:	Individual Splice Loss (times)		
	Number of Splices (equal)	0.1 dB x =	
	Total Splice Loss:		dB
4. Calculate Other Components			
Loss:	Total Components:		dB
5. Calculate Total Losses:	Total Connector Loss (plus)	+ dB	
	Total Splice Loss (plus)	+ dB	
	Total Components (equal)	+ dB =	
Total Connector/Splice Loss: d			

C. Calculate Active Component Link Loss Budget

System Wavelength:		nm	
Fiber Type:	Fiber Type:		
Average Transmitter Output (Launch	Power):	dBm	
Receiver MAX Sensitivity (10 ⁹ BER) (minus)		dBm	
Receiver MIN Sensitivity (10 ⁹ BER) (minus)		dBm =	
Receiver Dynamic Range:		dB	
6. Calculate Active Component	Average Transmitter Output		
Link Loss Budget:	(Launch Power) (minus)	dBm	
	dBm =		
Activ	dB		

D. Verify Performance

7. Calculate System Performance	Active Component Link Loss			
Margin to Verify Adequate Power:	Budget [C] (minus)		dB	
	Passive Cable Attenuation [A]			
	(minus)	_	dB	
	Total Connector/Splice Lost [B]		_	
	(equal)		$_{\rm dB} =$	
	System Performance Margin:			dB

10-3.15 ROADWAY WEATHER INFORMATION SYSTEM

DESCRIPTION

Roadway weather information system (RWIS) shall be Contractor furnished and installed as shown on the plans, in conformance with the details on the plans, RWIS manufacturer/supplier recommendations, and as directed by the Engineer. The Contractor shall be responsible for furnishing fully tested and operational system.

Roadside weather information system shall consist of the following equipment:

1. Remote Processing Units (RPU) for data collection, storage and transmission of sensor information. RPU shall communicate with RWIS servers via one CCITT V.24/EIA RS-232C communication interface port on the RPU and via direct Ethernet network connection.

Sensing devices for measurement of pavement surface and subsurface conditions:

- a. Dry
- b. Wet
- c. Frost covered
- d. Snow covered
- e. Ice
- f. Chemical factor (percentage in solution) shall also be monitored.
- g. Subsurface temperature

Sensing devices for measurement of atmospheric and environmental conditions:

- a. Wind speed and direction
- b. Precipitation (Yes or No, classification, and visibility)
- c. Relative humidity, air temperature and dew point
- 2. Mapping and software required to facilitate location specific weather forecasts for ice or snow control planning. These maps shall be compatible with existing user displays without additional modification at the server.

REMOTE PROCESSING UNIT

RPU shall be installed at the locations shown on the plans and as directed by the Engineer. RPU installation shall include all hardware, software, and licenses to operate as follows:

- 1. Pavement sensors shall measure pavement surface and subsurface temperatures, pavement surface condition and chemical concentration inputs and communicate the signals to the RPU.
- 2. Atmospheric and environmental sensors shall measure their respective weather parameters and communicate the signals to the RPU.
- 3. Each RPU shall process the output from the sensors, process and store the data temporarily and send the data to the server at the District 2 Office.
- 4. RPU shall be capable of collecting data from the following sensors:
 - a. One to eight surface sensors
 - b. One to eight subsurface sensors
 - c. One air temperature/relative humidity/dew point sensor
 - d. One wind speed/direction sensor
 - e. One precipitation classifier sensor (includes yes/no output, classification, and visibility)

RPU shall operate in a range 100 to 130 V(ac), from 50 to 60 Hz and shall use less than 50 W of continuous power. The primary power shall be fused at 15 A with voltage transient protection.

RPU shall contain operational self-test routines to automatically detect and log problems with the RPU. RPU shall reset itself if the RPU software enters an indeterminate state or if the user requests a reset from the user terminal.

The RPU design shall maximize the use of solid state components and modular circuit cards for ease of maintenance. All circuitry of the RPU, the voltage inputs, the sensor inputs, and the communications ports shall be designed and tested to provide transient and surge protection. RPU shall provide stable operation over a temperature range from -40°C to 70°C and from 0 to 90 percent relative humidity non-condensing.

RPU shall be capable of utilizing solar power or other power sources in place of the commercial power source. Solar power or other power sources options will be allowed only with written approval from the Engineer.

Each RPU shall be enclosed in a NEMA Type 4X lockable aluminum enclosure that is resistant to damage by weather and vandals. It shall be mounted on a tower. RPU shall be located along the roadway in the vicinity of the surface sensors as shown on the plans.

RPU's software shall be capable of calculating the 24 hour accumulation of precipitation and storing this information for subsequent displays on the user interface.

Servers shall poll the RPU at a user specified time interval to transfer and refresh its data.

COMMUNICATIONS

RWIS communications shall adhere to TCP/IP network protocols. In addition, RWIS communications between the RPU in the field and the Server located at the District 2 Office shall be in compliance with the latest version of the National Transportation Communications for ITS Protocol (NTCIP) Object Definitions for Environmental Sensor Stations (ESS) as posted on the following web site: http://www.ntcip.org/library/documents

The Contractor shall bring any conflicts with the above NTCIP standards and these special provisions to the attention of the Engineer prior to ordering the RWIS equipment.

The Contractor shall furnish documentation from an independent third party that the equipment proposed is in compliance with the provisions of the NTCIP ESS. Compliance shall be defined as the successful completion of the test procedures for NTCIP ESS.

PAVEMENT SENSORS

Surface Pavement Sensor

The sensor shall be a single unit, solid state, thermally passive, and constructed of a material with sufficient strength and durability to function as a stable system over a range of temperatures from -40°C to 80°C.

The sensors shall sample pavement surface conditions in real time and be non-destructive to pavement, environment, or personnel. The sensor head shall be self-contained and shall not require adjustment after initial installation in the pavement.

The sensors shall function satisfactorily during all climatic conditions and shall include protection against lightning. Sensor head performance shall not be degraded by weather conditions or the use of ice control chemicals. Vehicle traffic impact shall not deteriorate the sensor head or degrade performance

The sensors shall be installed in the pavement and shall emit electronic signal information concerning pavement conditions. The sensor heads shall be designed for flush mounting in the pavement, have thermal characteristics similar to the most commonly used road surface materials, and approximate the pavement surface texture and color.

The sensor shall electronically sample the following pavement conditions:

- 1. Pavement surface temperature at the sensor head.
- 2. Dry pavement condition.
- 3. Wet pavement condition above 0°C.
- 4. Wet but not frozen pavement condition at or below 0°C.
- 5. Snowy or icy pavement condition at or below 0°C.

In addition, the pavement sensor shall supply data for determining the following pavement surface conditions:

- 1. Freeze point temperature of the moisture/ice-control-chemical-solution present on the surface of the pavement sensor.
- 2. Depth of the moisture and ice-control-chemical-solution present on the surface of the pavement sensor in the range from 0.3 mm to 13 mm.
- 3. Percentage of ice particles present in the moisture/ice-control-chemical-solution present on the surface of the pavement sensor.

The Contractor shall supply actual field test documentation from RWIS manufacturer/supplier to substantiate the RWIS's pavement sensor performance.

Subsurface Temperature Sensor

Subsurface temperature sensor shall measure temperature below the roadway surface near the interface between the subgrade and the soil below.

The sensor shall be installed under the pavement, near the surface pavement sensors as shown on the plans.

The temperature sensing element shall operate over the temperature range from -40°C to 80°C.

Each Subsurface Sensor shall be supplied with sufficient cable to reach from the sensor to the RPU as shown on the Plans.

Sensor Cable

Each pavement surface sensor head shall be supplied with a waterproof input-output cable, sealed to the head to form an integral part of the assembly.

PRECIPITATION SENSOR

The precipitation sensor shall function as a precipitation classifier, a yes or no indication output, a precipitation rate meter, and a close range visibility sensor.

The sensor shall differentiate between rain, snow, and drizzle and measure actual precipitation as water equivalent.

The sensor shall have a rain dynamic range of 0.1 to 3000 mm/hr. It shall measure rain accumulation from 0.1 to 999 mm, with a rain accumulation accuracy of 5%. The sensor shall have a snow dynamic range of 0.01to 300 mm/hr water equivalent. It shall measure snow accumulation from 0.001 to 999 mm water equivalent, with a snow accumulation accuracy of 10%. Sensor visibility range shall extend from 7.5m to 1600 m.

Sensor housing shall be all weather, ice proof, with heated optics to prevent ice, dew, or frost build-up. Normal operating temperature range shall be from -40°C to 50°C. The sensor shall be mounted at the same location as the RPU.

RELATIVE HUMIDITY SENSOR AND AIR TEMPERATURE SENSOR

The relative humidity, air temperature and dew point sensor shall combine these functions in one unit that shall be mounted at the RPU location roughly 2 m above ground level in a solar/wind-radiation shield.

The temperature sensor element shall operate over the temperature range from -40°C to 80°C.

The relative humidity (RH) sensing element shall have a measuring range from 10 to 100 percent RH. The operating temperature range shall be from -35°C to 70°C.

Dew point shall be derived by calculation from the air temperature and relative humidity by the RPU.

The combined sensor shall operate to specifications at cable lengths up to 45 m from the RPU.

WIND SPEED AND DIRECTION SENSOR

The wind speed and direction sensor shall have an operating range from 0 to 161 km/h.

The sensor survival operation limit shall be 264 km/h with an operating azimuth of 360 degrees mechanical and 355 degrees electrical.

The temperature operating range shall be from -40°C to 60°C with a survival operating range to 85°C.

The wind speed and direction sensor shall be installed roughly 10 m above ground level at each RPU.

The sensor shall operate to specifications at cable lengths up to 45 m from the RPU.

OUALITY ASSURANCE

The Contractor shall arrange for the manufacturer/supplier to provide the materials, installation manuals and instructions, user training, and such other services as required to assure effective installation, testing, and operation of the system as specified in these special provisions.

1. Sensors shall include:

- A. Pavement Surface sensors.
- B. Subsurface sensors.
- C. Sensor embedding kits required for installing the sensor heads in the pavement.

2. Cables shall include:

- A. Arrangements by the Contractor for the manufacturer/supplier or approved representative to make SLC connections at the RPU enclosure.
- B. Cable splicing manual provided by the Contractor.
- C. One spare splicing kit for surface and subsurface sensors shall be provided for each type.

- 3. Remote Processor Unit (RPU) shall include:
 - A. One NEMA 4X, lockable aluminum enclosure with these dimensions: 915 mm (H) x 760 mm (W) x 305 mm (D).
 - B. Electronics rack installed or approved by manufacturer/supplier.
 - C. Atmospheric sensors required, including cabling and mounting plates.
 - D. Required mounting plates and hardware.
 - E. Remote processing unit as described elsewhere in these special provision.
- 4. On-site assistance and training shall include:
 - A. A representative from the manufacturer or supplier shall provide four hours of on-site user training for up to six State employees in the use of the system.B. Field Service Engineer from the manufacturer or supplier shall furnish the final installation support (one commissioning trip) for system inspection, turn-on and alignment.

Any trip by the manufacturer/supplier prior to the commissioning which is necessitated by the Contractor's incomplete or improper installation of equipment will be at the Contractor's expense.

INSTRUMENT TOWER ASSEMBLIES

Tower assemblies, as shown on the plans, shall consist of a free-standing, non-climbable, three-sided truss type construction tower, manufactured of aluminum angle and furnished in three sections. The total height shall be roughly 6 meters. Sections are attached to each other and to the base with 9.5 mm stainless steel hardware. The tower is to be equipped with a lockable fold-over device to facilitate servicing the atmospheric sensors.

Tower foundation, including anchor bolts, shall be constructed, as shown on the plans, as recommended by the system supplier, and as directed by the Engineer to accommodate tower installation.

PAYMENT

Full compensation for roadway weather information system shall be considered as included in the contract lump sum price paid for traffic operation system and no additional compensation will be allowed therefore.

ROADWAY WEATHER INFORMATION SYSTEM EQUIPMENT QUOTED PRICING

Arrangements have been made to insure that any successful bidder can obtain the RWIS equipment from a manufacturer/supplier, Surface Systems, Inc. (SSI), 11612 Lilburn Park Rd., St. Louis, MO 63146, Telephone (314) 569-1002. The price quoted by SSI for the RWIS, FOB site is \$58,423.26, not including sales tax.

The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer/supplier in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that RWIS conforms with the contract plans and specifications, conforms to the pre-qualified design and material requirements, and was manufactured in conformance with the approved quality control program.

10-3.16 TESTING

State-furnished equipment or existing facilities that fail during the functional test period will be replaced or repaired by the State or, if directed by the Engineer, by the Contractor, and such work will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications.

Successfully completed functional testing prior to any failure of State-furnished equipment or an existing facility will be credited to the total required test period.

Testing of sensor cables and lead-in cable after installation shall be per RWIS Manufacturer/Supplier recommendation.

10-3.17 RELIEF FROM MAINTENANCETRAINING

Contractor shall provide on-site assistance and training as follows:

- 1. Provide a Field Service Engineer to furnish final installation, support for system inspection, turn—on and alignment (commissioning). The commissioning of the RWIS will be scheduled within 3 weeks after the Contractor submits a written request to the Engineer.
- 2. Provide a training specialist to perform one day of system user training after the system is operational. User training will be scheduled within 3 weeks after the Contractor submits a written request to the Engineer.

10-3.18 MODEL 510 CHANGEABLE MESSAGE SIGN SYSTEM

Model 510 changeable message sign (CMS) systems will be State-furnished as provided under "Materials" of these special provisions and consist of a Model 510 CMS, control cables, a Model 170 controller assembly in a completely wired Type 1, but without anchor bolts, and the required wiring and auxiliary equipment required to control the CMS shown on the plans and in conformance with these special provisions.

Model 510 changeable message sign system components will conform to the requirements in "Specifications for Changeable Message Sign System," issued by the State of California, Department of Transportation, and to the addendums thereto current at the time of project advertising. Model 170 controller assemblies will conform to the requirements in "Traffic Signal Control Equipment Specifications," issued by the State of California, Department of Transportation, and to the addendums thereto current at the time of project advertising.

Attention is directed to "sign Structures" of these special provisions.

The sign assembly shall be installed on the sign structure. The controller cabinet foundation shall be constructed as shown on the plans for Model 334 cabinets (including furnishing and installing anchor bolts), the controller cabinet shall be installed on the foundation, and the field wiring connections shall be made to the terminal blocks in the sign assembly and in the controller cabinet.

Field conductors No. 12 and smaller shall terminate with spade terminals. Field conductors No. 10 and larger shall terminate in spade or ring terminals.

A listing of field conductor terminations, in each State-furnished changeable message sign and controller cabinet, will be furnished free of charge to the Contractor at the site of the work.

The location of the foundation for each controller cabinet will be determined by the Engineer.

State forces will maintain the sign assemblies. The Contractor's responsibility shall be limited to conformance with the provisions in Section 6-1.02, "State-Furnished Materials," of the Standard Specifications.

10-3.19 PAYMENT

The contract lump sum price paid for traffic operations system shall include full compensation for furnishing all labor, materials, tools, equipment and incidentals and for doing all the work involved in installing the roadway weather information system, fiber optic cable, pull boxes, asphalt concrete, changeable message sign system, and uninterruptible power system, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions and as directed by the Engineer.

Full compensation for furnishing and installing object marker (type L-1) shall be considered as included in the contract lump sum price paid for the electrical work requiring the object marker and no separate payment will be made therefor.

SECTION 11. (BLANK)

SECTION 12. (BLANK)

SECTION 13. RAILROAD RELATIONS AND INSURANCE REQUIREMENTS

13-1.01 **GENERAL**

The term "Railroad" shall mean the Union Pacific Railroad Company.

It is expected that the Railroad will cooperate with the Contractor to the end that the work may be handled in an efficient manner. However, except for the additional compensation provided for hereinafter for delays in completion of specific unit of work to be performed by the Railroad, and except as provided in Public Contracts Code Section 7102, the Contractor shall have no claim for damages, extension of time, or extra compensation in the event his work is held up by work performed by the Railroad.

The Contractor must understand the Contractor's right to enter Railroad's property is subject to the absolute right of Railroad to cause the Contractor's work on Railroad's property to cease if, in the opinion of Railroad, Contractor's activities create a hazard to Railroad's property, employees, and operations.

The Contractor shall sign and submit to the Railroad the Contractor's Endorsement, in the form attached hereto.

13-1.02 RAILROAD REQUIREMENTS

The Contractor shall notify Mr. Jim Smith, Manager Industry and Public Projects, 10031 Foothills Blvd., Roseville, CA 95678, Telephone (916) 789-6352, and the Engineer, in writing, at least 10 working days before performing any work on, or adjacent to the property or tracks of the Railroad.

The Contractor shall cooperate with the Railroad where work is over or under the tracks, or within the limits of Railroad property, to expedite the work and avoid interference with the operation of railroad equipment.

The Contractor shall comply with the rules and regulations of Railroad or the instructions of its representatives in relation to protecting the tracks and property of Railroad and the traffic moving on such tracks, as well as the wires, signals and other property of Railroad, its tenants or licensees, at and in the vicinity of the work during the period of construction.

The Contractor shall perform work to not endanger or interfere with the safe operation of the tracks and property of Railroad and traffic moving on such tracks, as well as wires, signals and other property of Railroad, its tenants or licensees, at or in the vicinity of the work.

The Contractor shall take protective measures to keep railroad facilities, including track ballast, free of sand or debris resulting from his operations. Damage to railroad facilities resulting from Contractor's operations will be repaired or replaced by Railroad and the cost of such repairs or replacement shall be deducted from the Contractor's progress and final pay estimates.

The Contractor shall contact the Railroad's "Call Before You Dig" at least 48 hours prior to commencing work, at 1-800-336-9193 (a 24 hour number) to determine location of fiber optics. If a telecommunications system is buried anywhere on or near railroad property, the Contractor will coordinate with the Railroad and the Telecommunication Company(ies) to arrange for relocation or other protection of the system prior to beginning any work on or near Railroad Property.

The Contractor shall not pile or store any materials nor park any equipment closer than 7.62-meter (25'-0") to the centerline of the nearest track, unless directed by Railroad's representative.

The Contractor shall also abide by the following temporary clearances during the course of construction:

3.66-meter (12'-0") horizontally from centerline of track

6.40-meter (21'-0") vertically above top of rail

The temporary vertical construction clearance above provided will not be permitted until authorized by the Public Utilities Commission. It is anticipated that authorization will be received not later than 15 days after the approval of the contract by the Attorney General. In the event authorization is not received by the time specified, and, if in the opinion of the Engineer, the Contractor's operations are delayed or interfered with by reason of authorization not being received by the said time, the State will compensate the Contractor for such delay to the extent provided in Section 8-1.09, "Right of Way Delays," of the Standard Specifications and not otherwise.

Walkways with railing shall be constructed by Contractor over open excavation areas when in close proximity of tracks, and railings shall not be closer than 2.60-meter (8'-6") horizontally from centerline of the nearest track, if tangent, or 2.90-meter (9'-6") if curved.

Infringement on the above temporary construction clearances by the Contractor's operations shall be submitted to the Railroad by the Engineer, and shall not be undertaken until approved by the Railroad, and until the Engineer has obtained any necessary authorization from any governmental body or bodies having jurisdiction thereover. No extension of time or extra compensation will be allowed in the event the Contractor's work is delayed pending Railroad approval and governmental authorization.

When the temporary vertical clearance is less than 6.86-meter (22'-6") above top of rail, Railroad shall have the option of installing tell-tales or other protective devices Railroad deems necessary for protection of Railroad trainmen or rail traffic.

Four sets of plans, in 279mm x 432mm (11" x 17") format, and two sets of calculations showing details of temporary support over the Railroad's tracks and property not included in the contract plans, shall be submitted to the Engineer for review prior to submittal to Railroad for final approval. All plans and calculations shall be prepared and signed by a professional civil engineer registered in the State of California. The review and approval by Railroad may take up to 6 weeks after receipt of all necessary information. No work shall be undertaken until such time as the Railroad has given such approval.

The Contractor shall notify the Engineer in writing, at least 25 calendar days but not more than 40 days in advance of the starting date of installing temporary work with less than permanent clearance at each structure site. The Contractor shall not be permitted to proceed with work across railroad tracks until this requirement has been met. No extension of time or extra compensation will be allowed if the Contractor's work is delayed due to failure to comply with the requirements in this paragraph.

Private crossings at grade over tracks of Railroad for the purpose of hauling earth, rock, paving or other materials will not be permitted. If the Contractor, for the purpose of constructing highway-railway grade separation structures, including construction ramps thereto, desires to move equipment or materials across Railroad's tracks, the Contractor shall first obtain permission from Railroad. Should Railroad approve the crossing, the Contractor shall execute a private crossing agreement. By this agreement, the Contractor shall bear the cost of the crossing surface, with warning devices that might be required. The Contractor shall furnish the Contractor's own employees as flagmen to control movements of vehicles on the private roadway and shall prevent the use of such roadway by unauthorized persons and vehicles.

Blasting will be permitted only when approved by the Railroad.

The Contractor shall, upon completion of the work covered by this contract to be performed by Contractor upon the premises or over or beneath the tracks of Railroad, promptly remove from the premises of Railroad, Contractor's tools, implements and other materials, whether brought upon said premises and cause said premises to be left in a clean and presentable condition.

Under-track pipeline installations shall be constructed in accordance with Railroad's current standards which may be obtained from Railroad. The general guidelines are as follows:

Edges of jacking or boring pit excavations shall be a minimum of 6.10-meter (20 feet) from the centerline of the nearest track.

If the pipe to be installed under the track is 100 mm (4 inches) in diameter or less, the top of the pipe shall be at least 1.067-meter (42 inches) below base of rail.

If the pipe diameter is greater than 100 mm (4 inches) in diameter, it shall be encased and the top of the steel pipe casing shall be at least 1.60-meter (66 inches) below base of rail.

Installation of pipe or conduit under Railroad's tracks shall be done by dry bore and jack method.

Hydraulic jacking or boring will not be permitted. Care is to be exercised so as not to damage any underground facilities of Railroad.

13-1.03 PROTECTION OF RAILROAD FACILITIES

Upon advance notification of not less than 10 working days by the Contractor, Railroad representatives, conductors, flagmen or watchmen will be provided by Railroad to protect its facilities, property and movements of its trains or engines. Notice shall be made to Jim Smith of Railroad at (916) 789-6352. At the time of notification, the Contractor shall provide Railroad with a schedule of dates that flagging services will be needed, as well as times, if outside normal working hours. Subsequent deviation from the schedule shall require 10 working days advance notice from the first affected date. The Railroad will furnish such personnel or other protective devices:

- (a) When any part of any equipment is standing or being operated within 25 feet, measured horizontally, from centerline of any track on which trains may operate, or when any erection or construction activities are in progress within such limits, regardless of elevation above or below track.
- (b) For any excavation below elevation of track subgrade if, in the opinion of Railroad's representative, track or other Railroad facilities may be subject to settlement or movement.
- (c) During any clearing, grubbing, grading or blasting in proximity to Railroad which, in the opinion of Railroad's representative, may endanger Railroad facilities or operations.
- (d) During any of Contractor's operations when, in the opinion of Railroad's representatives, Railroad facilities, including, but not limited to, tracks, buildings, signals, wire lines or pipe lines, may be endangered.

The cost of flagging and inspection provided by Railroad during the period of constructing that portion of the project located on or near Railroad property, as deemed necessary for the protection of Railroad's facilities and trains, will be borne by the State for a period of 10 working days beginning on the date work commences on or near property of Railroad. The Contractor shall pay to the State liquidated damages in the sum of \$500 per day for each day in excess of the above 10 working days the Contractor works on or near Railroad property, and which requires flagging protection of Railroad's facilities and trains.

13-1.04 WORK BY RAILROAD

Railroad will furnish or cause to be furnished as necessary due to construction, labor materials, tools and equipment to perform certain works including relocation of telephone, telegraphy and signal lines and appurtenances and will perform any other work in connection therewith.

The following work by Railroad will be performed by Railroad forces and is not a part of the work under this contract.

(a) The Railroad will perform preliminary engineering inspection and flagging as specified in Section 13-1.03, "Protection of Railroad Facilities," of these special provisions.

13-1.05 DELAYS DUE TO WORK BY RAILROAD

No delay due to work by the Railroad is anticipated.

If delays due to work by the Railroad occur, and the Contractor sustains loss which, in the opinion of the Engineer, could not have been avoided by the judicious handling of forces, equipment and plant, the amount of said loss shall be determined as provided in Section 8-1.09, "Right of Way Delays," of the Standard Specifications.

If a delay due to work by Railroad occurs, an extension of time determined pursuant to the provisions in Section 8-1.07, "Liquidated Damages," of the Standard Specifications will be granted.

13-1.06 LEGAL RELATIONS

The provisions of Section 13-1, "Relations with Railroad Company," and the provisions of Section 13-2, "Railroad Protective Insurance," of these special provisions shall inure directly to the benefit of Railroad.

13-2 RAILROAD PROTECTIVE INSURANCE

The term "Railroad" shall mean the Union Pacific Railroad Company.

In addition to any other form of insurance or bonds required under the terms of the contract and specifications, the Contractor will be required to carry insurance of the kinds and in the amounts hereinafter specified.

Such insurance shall be approved by the Railroad before any work is performed on Railroad's property and shall be carried until all work required to be performed on or adjacent to the Railroad's property under the terms of the contract is satisfactorily completed as determined by the Engineer, and thereafter until all tools, equipment and materials have been removed from Railroad's property and such property is left in a clean and presentable condition.

The insurance herein required shall be obtained by the Contractor, who shall furnish the Railroad with completed certificates, in the form attached hereto, signed by the insurance company or its authorized agent or representative, reflecting the existence of each of the policies required by 1 and 2 below including coverage for X, C and U and completed operations hazards, and the original policy of insurance (or a certified duplicate original policy) required by 3 below, to:

Judy Scott Union Pacific Railroad Company Insurance Group 1416 Dodge Street, Room 820 Omaha, NE 68179

Certificate of insurance shall guarantee that the policy under 1 and 2 will not be amended, altered, modified or canceled insofar as the coverage contemplated hereunder is concerned, without at least thirty (30) days notice mailed by registered mail to the Railroad.

Full compensation for all premiums which the Contractor is required to pay on all the insurance described hereinafter shall be considered as included in the prices paid for the various items of work to be performed under the contract, and no additional allowance will be made therefor or for additional premiums which may be required by extensions of the policies of insurance.

The approximate daily train traffic is 24 freight trains and two passenger trains.

1. Contractor's Public Liability and Property Damage Liability Insurance

The Contractor shall, with respect to the operations he performs within or adjacent to Railroad's property, carry regular Contractor's Public Liability and Property Damage Liability Insurance providing for the same limits as specified for Railroad's Protective Public Liability and Property Damage Liability insurance to be furnished for and in behalf of Railroad as hereinafter provided.

If any part of the work within or adjacent to Railroad's property is subcontracted, the Contractor in addition to carrying the above insurance shall provide the above insurance on behalf of the subcontractors to cover their operations.

2. Contractor's Protective Public Liability and Property Damage Liability Insurance.

The Contractor shall, with respect to the operations performed for him by subcontractors who do work within or adjacent to Railroad's property, carry in his own behalf regular Contractor's Protective Public Liability and Property Damage Liability Insurance providing for the same limits as specified for Railroad's Protective Public Liability and Property Damage Liability Insurance to be furnished for and on behalf of Railroad as hereinafter provided.

3. Railroad's Protective Public Liability and Property Damage Liability Insurance

The Contractor shall, with respect to the operations he performs within or adjacent to Railroad's property or that of any of his subcontractors who do work within or adjacent to Railroad's property perform, have issued and furnished in favor of Railroad, Policy or policies of insurance in the Railroad Protective Liability Form as hereinafter specified.

Railroad Protective Liability Form

DECLARA'	TIONS			(Name	e of Insurance C	Company)
Item 1.	Named Insured:					
	14	ion Pacific Railroad (16 Dodge Street - Ma naha, Nebraska 68179	il Code 1004	19		
Item 2.	Policy Period: I site as stated her			12:01 a.m	n., Standard Time	e, at the designated job
Item 3.	The insurance afforded is only with respect to such of the following coverage's as are indicated in Item 6 by specific premium charge or charges. The limit of the company's liability against such coverage or coverage's shall be as stated herein, subject to all the terms of this policy having reference thereto.					
					Limits of	Liability
Coverage's				Each	Occurrence	Aggregate
A B & C	Bodily Injury L Property Dama and Physical Da Property	ge Liability		\$2,000,00 Combine Single Limit		\$6,000,000 for Coverage's A, B & C
Item 4.	Name and Addre	ess of Contractor:				
Item 5.	performed: State		by and thro			ne Contractor is being ansportation, P.O. Box
Item 6.	Designation of the	he Job Site and Descr	iption of Wo	ork:		
	FOR CONSTRU	JCTION ON				
	Premium Bases	Rates per \$	5100 of Cost Coverage'		Advanc Coverage A	e Premiums Coverage's B & C
	Contract Cost	\$	\$	<u> </u>	\$	\$
	Rental Cost	\$	\$		\$	\$

	Countersigned	, 20 by
POLICY		Title
		(Name of Insurance Company)
		insurance company, herein called the company, agrees with the declarations made a part hereof, in consideration of the payment of the ce upon the statements in the declaration made by the named insured and ms of this policy.

20

INSURING AGREEMENTS

I. Coverage A--Bodily Injury Liability.

Countaraianad

To pay on behalf of the insured all sums which the insured shall become legally obligated to pay as damages because of bodily injury, sickness, or disease, including death at any time resulting therefrom, hereinafter called "bodily injury," either (1) sustained by any person arising out of acts or omissions at the designated job site which are related to or are in connection with the work described in Item 6 of the declarations, or (2) sustained at the designated job site by the Contractor or any employee of the Contractor, or by any employee of the Govern-mental Authority specified in Item 5 of the Declarations, or by any designated employee of the insured whether or not arising out of such acts or omissions.

Coverage B--Property Damage Liability.

To pay on behalf of the insured all sums which the insured shall become legally obligated to pay as damages because of physical injury to or destruction of property, including loss of use of any property due to such injury or destruction, hereinafter called "property damage," arising out of acts or omissions at the designated job site which are related to or are in connection with the work described in Item 6 of the declarations.

Coverage C--Physical Damage to Property.

To pay for direct and accidental loss of or damage to rolling stock and their contents, mechanical construction equipment, or motive power equipment, hereinafter called "loss," arising out of acts or omissions at the designated job site which are related to or are in connection with the work described in Item 6 of the declarations; provided such property is owned by the named insured or is leased or entrusted to the named in-sured under a lease or trust agreement.

II. Definitions.

- (a) **Insured**.--The unqualified word "insured" includes the named insured and also includes any executive officer, director or stockholder thereof while acting within the scope of his duties as such.
- (b) **Contractor.-**The word "contractor" means the Contractor designated in Item 4 of the declarations and includes all subcontractors of said Contractor but shall not include the named insured.
- (c) Designated employee of the insured.--The words "designated employee of the insured" mean:
 - (1) any supervisory employee of the insured at the job site, Contract No. 02-0C0504

- (2) any employee of the insured while operating, attached to or engaged on work trains or other railroad equipment at the job site which are assigned exclusively to the Contractor, or
- (3) any employee of the insured not within (1) or (2) who is specifically loaned or assigned to the work of the Contractor for prevention of accidents or protection of property, the cost of whose services is borne specifically by the Contractor or by govern-mental authority.
- (d) **Contract.--**The word "contract" means any contract or agreement to carry a person or property for a consideration or any lease, trust or interchange contract or agreement respecting motive power, rolling stock or mechanical construction equipment.

III. Defense, Settlement, Supplementary Payments.

With respect to such insurance as is afforded by this policy under Coverage's A and B, the company shall:

- (a) defend any suit against the insured alleging such bodily injury or property damage and seeking damages which are payable under the terms of this policy, even if any of the allegations of the suit are groundless, false or fraudulent; but the company may make such investigation and settlement of any claim or suit as it deems expedient;
- (b) pay, in addition to the applicable limits of liability:
 - all expenses incurred by the company, all costs taxed against the insured in any such suit and all interest on the entire amount of any judgment therein which accrues after entry of the judgment and before the company has paid or tendered or deposited in court that part of the judgment which does not exceed the limit of the company's liability thereon;
 - (2) Premiums on appeal bonds required in any such suit, premiums on bonds to release attachments for an amount not in excess of the applicable limit of liability of this policy, but without obligation to apply for or furnish any such bonds;
 - (3) expenses incurred by the insured for such immediate medical and surgical relief to others as shall be imperative at the time of the occurrence;
 - (4) all reasonable expenses, other than loss of earnings, incurred by the insured at the company's request.

IV. Policy Period, Territory.

This policy applies only to occurrences and losses during the policy period and within the United States of America, its territories or possessions, or Canada.

EXCLUSIONS

This policy does not apply:

- (a) to liability assumed by the insured under any contract or agreement except a contract as defined herein;
- (b) to bodily injury or property damage caused intentionally by or at the direction of the insured:

- (c) to bodily injury, property damage or loss which occurs after notification to the named insured of the acceptance of the work by the governmental authority, other than bodily injury, property damage or loss resulting from the existence or removal of tools, uninstalled equipment and abandoned or unused materials;
- (d) under Coverage's A(1), B and C, to bodily injury, property damage or loss, the sole proximate cause of which is an act or omission of any insured other than acts or omissions of any designated employee of any insured;
- (e) under Coverage A, to any obligation for which the insured or any carrier as his insurer may be held liable under any workmen's compensation, unemployment compensation or disability benefits law, or under any similar law; provided that the Federal Employers' Liability Act, U.S. Code (1946), Title 45, Sections 51-60, as amended, shall for the purposes of this insurance be deemed not to be any similar law;
- (f) under Coverage B, to injury to or destruction of property (1) owned by the named insured or (2) leased or entrusted to the named insured under a lease or trust agreement.
- (g) 1. Under any liability coverage, to injury, sickness, disease, death or destruction
 - (a) with respect to which an insured under the policy is also an insured under a nuclear energy liability policy issued by Nuclear Energy Liability Insurance Association, Mutual Atomic Energy Liability Underwriters or Nuclear Insurance Association of Canada, or would be an insured under any such policy but for its termination upon exhaustion of its limit of liability; or
 - (b) resulting from the hazardous properties of nuclear material and with respect to which (1) any person or organization is required to maintain financial protection pursuant to the Atomic Energy Act of 1954, or any law amendatory thereof, or (2) the insured is, or had this policy not been issued would be, entitled to indemnity from the United States of America, or any agency thereof, under any agreement entered into by the United States of America, or any agency thereof, with any person or organization.
 - 2. Under any medical payments coverage, or under any Supplementary Payments provision relating to immediate medical or surgical relief, to expenses incurred with respect to bodily injury, sickness, disease or death resulting from the hazardous properties of nuclear material and arising out of the operation of a nuclear facility by any person or organization.
 - 3. Under any liability coverage, to injury, sickness, disease, death or destruction resulting from the hazardous properties of nuclear material, if
 - (a) the nuclear material (1) is at any nuclear facility owned by, or operated by or on behalf of, an insured or (2) has been discharged or dispersed therefrom;
 - (b) the nuclear material is contained in spent fuel or waste at any time possessed, handled, used, processed, stored, transported or disposed of by or on behalf of an insured; or
 - (c) the injury, sickness, disease, death or destruction arises out of the furnishing by an insured of services, materials, parts or equipment in connection with the planning, construction, maintenance, operation or use of any nuclear facility, but if such facility is located within the United States of America, its territories or possessions or Canada, this exclusion (c) applies only to injury to or destruction of property at such nuclear facility.
 - 4. As used in this exclusion:

"hazardous properties" include radioactive, toxic or explosive properties;

"nuclear material" means source material, special nuclear material or byproduct material;

"source material", "special nuclear material", and "byproduct material" have the meanings given them in the Atomic Energy Act of 1954 or in any law amendatory thereof;

"spent fuel" means any fuel element or fuel component, solid or liquid, which has been used or exposed to radiation in a nuclear reactor;

"waste" means any waste material (1) containing byproduct material and (2) resulting from the operation by any person or organization of any nuclear facility included within the definition of nuclear facility under paragraph (a) or (b) thereof;

"nuclear facility" means

- (a) any nuclear reactor,
- (b) any equipment or device designed or used for (1) separating the isotopes of uranium or plutonium, (2) processing or utilizing spent fuel, or (3) handling, processing or packaging waste,
- (c) any equipment or device used for the processing, fabricating or alloying of special nuclear material if at any time the total amount of such material in the custody of the insured at the premises where such equipment or device is located consists of or contains more than 25 grams of plutonium or uranium 233 or any combination thereof, or more than 250 grams of uranium 235,
- (d) any structure, basin, excavation, premises or place prepared or used for the storage or disposal of waste, and includes the site on which any of the foregoing is located, all operations conducted on such site and all premises used for such operations;

"nuclear reactor" means any apparatus designed or used to sustain nuclear fission in a self-supporting chain reaction or to contain a critical mass of fissionable material;

with respect to injury to or destruction of property, the word "in-jury" or "destruction" includes all forms of radioactive contamination of property.

(h) under Coverage C, to loss due to nuclear reaction, nuclear radiation or radioactive contamination, or to any act or condition incident to any of the foregoing.

CONDITIONS

(The conditions, except conditions 3, 4, 5, 7, 8, 9, 10, 11 and 12, apply to all coverage's. Conditions 3, 4, 5, 7, 8, 9, 10, 11 and 12, apply only to the coverage noted thereunder.)

1. **Premium.--**The premium bases and rates for the hazards described in the declarations are stated therein. Premium bases and rates for hazards not so described are those applicable in accordance with the manuals in use by the company.

The term "contract cost" means the total cost of all work described in Item 6 of the declarations.

The term "rental cost" means the total cost to the Contractor for rental of work trains or other railroad equipment, including the remuneration of all employees of the insured while operating, attached to or engaged thereon. The advance premium stated in the declarations is an estimated premium only. Upon termination of this policy the earned premium shall be computed in accordance with the company's rules, rates, rating plans, premiums and minimum premiums applicable to this insurance. If the earned premium thus computed exceeds the estimated advance

premium paid, the company shall look to the Contractor specified in the declarations for any such excess; if less, the company shall return to the said Contractor the unearned portion paid.

In no event shall payment of premium be an obligation of the named insured.

2. Inspection.--The named insured shall make available to the company records of information relating to the subject matter of this insurance.

The company shall be permitted to inspect all operations in connection with the work described in Item 6 of the declarations.

- 3. Limits of Liability, Coverage A.--The limit of bodily injury liability stated in the declarations as applicable to "each person" is the limit of the company's liability for all damages, including damages for care and loss of services, arising out of bodily injury sustained by one person as the result of any one occurrence; the limit of such liability stated in the declarations as applicable to "each occurrence" is, subject to the above provision respecting each person, the total limit of the company's liability for all such damage arising out of bodily injury sustained by two or more persons as the result of any one occurrence.
- **4. Limits of Liability, Coverage's B and C.-**The limit of liability under Coverages B and C stated in the declarations as applicable to "each occurrence" is the total limit of the company's liability for all damages and all loss under Coverage B and C combined arising out of physical injury to, destruction or loss of all property of one or more persons or organizations, including the loss of use of any property due to such injury or destruction under Coverage B, as the result of any one occurrence.

Subject to the above provision respecting "each occurrence," the limit of liability under Coverage's B and C stated in the declarations as "aggregate" is the total limit of the company's liability for all damages and all loss under Coverage's B and C combined arising out of physical injury to, destruction or loss of property, including the loss of use of any property due to such injury or destruction under Coverage B.

Under Coverage C, the limit of the company's liability for loss shall not exceed the actual cash value of the property, or if the loss is of a part thereof the actual cash value of such part, at time of loss, nor what it would then cost to repair or replace the property or such part thereof with other of like kind and quality.

- **5. Severalty of Interests, Coverage's A and B.--** The term "the insured" is used severally and not collectively, but the inclusion herein of more than one insured shall not operate to increase the limits of the company's liability.
- **6. Notice.--**In the event of an occurrence or loss, written notice containing particulars sufficient to identify the insured and also reasonably obtainable information with respect to the time, place and circumstances thereof, and the names and addresses of the injured and of available witnesses, shall be given by or for the insured to the company or any of its authorized agents as soon as practicable. If claim is made or suit is brought against the insured, he shall immediately forward to the company every demand, notice, summons or other process received by him or his representative.
- **7.** Assistance and Cooperation of the Insured, Coverage's A and B.--The insured shall cooperate with the company and, upon the company's request, attend hearings and trials and assist in making settlements, securing and giving evidence, obtaining the attendance of witnesses and in the conduct of suits. The insured shall not, except at his own cost, voluntarily make any payment, assume any obligation or incur any expense other than for such immediate medical and surgical relief to others as shall be imperative at the time of accident.
- **8. Action Against Company, Coverages A and B.-**-No action shall lie against the company unless, as a condition precedent thereto, the insured shall have fully complied with all the terms of this policy, nor until the amount of the insured's obligation to pay shall have been finally determined either by judgment against the insured after actual trial or by written agreement of the insured, the claimant and the company.

Any person or organization or the legal representative thereof who has secured such judgment or written agreement shall thereafter be entitled to recover under this policy to the extent of the insurance afforded by this policy. No person or organization shall have any right under this policy to join the company as a party to any action against the insured to determine the insured's liability. Bankruptcy or insolvency of the insured or of the insured's estate shall not relieve the company of any of its obligations hereunder.

Coverage C.--No action shall lie against the company unless, as a condition precedent thereto, there shall have been full compliance with all the terms of this policy nor until 30 days after proof of loss is filed and the amount of loss is determined as provided in this policy.

- 9. Insured's Duties in Event of Loss, Coverage C.--In the event of loss the insured shall:
- (a) protect the property, whether or not the loss is covered by this policy, and any further loss due to the insured's failure to protect shall not be recoverable under this policy; reasonable expenses incurred in affording such protection shall be deemed incurred at the company's request;
- (b) file with the company, as soon as practicable after loss, his sworn proof of loss in such form and including such information as the company may reasonably require and shall, upon the company's re-quest, exhibit the damaged property.
- 10. Appraisal, Coverage C.--If the insured and the company fail to agree as to the amount of loss, either may, within 60 days after the proof of loss is filed, demand an appraisal of the loss. In such event the insured and the company shall each select a competent appraiser, and the appraisers shall select a competent and disinterested umpire. The appraisers shall state separately the actual cash value and the amount of loss and failing to agree shall submit their differences to the umpire. An award in writing of any two shall deter-mine the amount of loss. The insured and the company shall each pay his chosen appraiser and shall bear equally the other expenses of the appraisal and umpire.

The company shall not be held to have waived any of its rights by any act relating to appraisal.

- **11. Payment of Loss, Coverage C.--**The company may pay for the loss in money but there shall be no abandonment of the damaged property to the company.
- 12. No Benefit to Bailee, Coverage C.--The insurance afforded by this policy shall not inure directly or indirectly to the benefit of any carrier or bailee, other than the named insured, liable for loss to the property.
- 13. Subrogation.--In the event of any payment under this policy, the company shall be subrogated to all the insured's rights of recovery therefor against any person or organization and the insured shall execute and deliver instruments and papers and do whatever else is necessary to secure such rights. The insured shall do nothing after loss to prejudice such rights.
 - **14. Application of Insurance.**—The insurance afforded by this policy is primary insurance.
- **15.** Three Year Policy.--A policy period of three years is comprised of three consecutive annual periods. Computation and adjustment of earned premium shall be made at the end of each annual period. Aggregate limits of liability as stated in this policy shall apply separately to each annual period.
- 16. Changes.--Notice to any agent or knowledge possessed by any agent or by any other person shall not effect a waiver or a change in any part of this policy or stop the company from asserting any right under the terms of this policy; nor shall the terms of this policy be waived or changed, except by endorsement issued to form a part of this policy.
- 17. Assignment.--Assignment of interest under this policy shall not bind the company until its consent is endorsed hereon.

18. Cancellation.--This policy may be canceled by the named insured by mailing to the company written notice stating when thereafter the cancellation shall be effective. This policy may be canceled by the company by mailing to the named insured, Contractor and governmental authority at the respective addresses shown in this policy written notice stating when not less than 30 days thereafter such cancellation shall be effective. The mailing of notice as aforesaid shall be sufficient proof of notice. The effective date and hour of cancellation stated in the notice shall become the end of the policy period. Delivery of such written notice either by the named insured or by the company shall be equivalent to mailing.

If the named insured cancels, earned premium shall be computed in accordance with the customary short rate table and procedure. If the company cancels, earned premium shall be computed pro rata. Premium adjustment may be made either at the time cancellation is effected or as soon as practicable after cancellation becomes effective, but payment or tender of unearned premium is not a condition of cancellation.

19. Declaration.--By acceptance of this policy the named insured agrees that such statements in the declarations as are made by him are his agreements and representations, that this policy is issued in reliance upon the truth of such representations and that this policy embodies all agreements existing between himself and the company or any of its agents relating to this insurance.

In witness whereof, the	Insurance Company has caused this policy to be, and counter-signed on the declaration page		
(Facsimile of Signature)	(Facsimile of Signature)		
Secretary	President		

CERTIFICATE OF INSURANCE

This is to certify to: RAILROAD FILE NO. (1) Division of Right of Way M.P. 293.8 Railroad Agreements, MS-37 PUC No.: 4-293.8-A California Department of Transportation 02-0C0504 1120 N Street, Sacramento, California 95814 (2) and to the following Railroad Company: Union Pacific Railroad Company That such insurance as is afforded by the policy or policies described below for bodily injury liability and property damage liability is in full force and effect as of the date of this certificate and covers the following contractor as a named insured with respect to liability for damages arising out of operations performed by or for the named insured in connection with the contract or work described below. Named Insured and Address This is to certify that policies of insurance listed below have been issued to the insured named above and are in force at this time. Notwithstanding any requirement, term or condition of any contract or other document with respect to which this certificate may be issued or may pertain, the insurance afforded by the policies described herein is subject to all the terms, exclusions and conditions of such policies. 2. Description of Work Contract No. Policy Limits of Liability 3. Coverage's **Expiration Date** Each Occurrence Aggregate Contractor's **Bodily Injury Liability and** Property Damage Liability Umbrella or Excess Liability All of the coverages include coverage for the completed operations hazard, and X, C and U exposures. Name of Insurance Company by Coverage Coverage's Company Policy Number **Bodily Injury Liability** Property Damage Liability Umbrella or Excess Liability 4. The policy or policies described above will not be amended, altered, modified or cancelled until thirty (30) days after written notice thereof has been given by registered mail to the Railroad named as certificate holder in this certificate Certificate Date:

(Insurance Company)

State of California

By	
(Authorized Agent or Representative)	

Department of Transportation DH-0S-A104(8-10-00)

CONTRACTOR'S ENDORSEMENT

A. As a condition to entering upon Railroad's r Licensee's contractor,	ight-of-way to perform work pursuant to this agreement,, whose address is(hereinafter "Contractor), agrees
to comply with and be bound by all the terms and provisions of insurance requirements set forth in Section 13 of the Contract	f this agreement relating to the work to be performed and the
insurance for the Railroad Protective Liability Insurance descr original policy (or a certified duplicate original policy), and (2	the Contractor will provide the Railroad with (1) a binder of ibed in Section 13.2 of the Contract Special Provisions, and the a certificate issued by its insurance carrier providing the other contract Special Provisions in a policy or policies which contain
	ned as an additional insured with respect to formance of work on behalf of the State.
C. This endorsement shall be completed and directe	d to:
Mr. Jim Smit Manager Industry & Pul Union Pacific Railroad 10031 Foothills Bo Roseville, CA 93 (916) 789-635	olic Projects Company ulevard 5678
	CONTRACTOR (print name on above line)
	By:
	Title: